More than 29 years since launch, the Hubble Space Telescope continues its role at the forefront of astronomy, ranging from our own Solar System to the high-redshift universe.

Through the middle of the next decade, HST will remain the only space-based telescope providing spectroscopy and high-resolution imaging at UV, optical, and near-infrared wavelengths. With the launch of JWST, the bold science questions pursued with HST will be bolstered by the complementary capabilities of the two observatories.
Key Science Threads

- Properties of the huge variety of exo-planetary systems: compositions and characteristics of the parent stars and their planets
- Probing the stellar and galactic evolution across the universe: pushing closer to the beginning of galaxy formation and preparing for JWST deep observations
- Exploring traces of dark energy
- Probing the effect of dark matter on the evolution of galaxies
- Quantifying the types and astrophysics of black holes of over 7 orders of magnitude in size
- Tracing the distribution of chemicals of life in the universe
- Investigating phenomena and possible sites for robotic and human exploration within our Solar System

Observing opportunities include preparation for JWST observations, the UV initiative, and mid-cycle observing proposals.

Highlights

ACS Cycle 25 (CALACS) broadly updated for pixel-level corrections: “Putting the electrons back where they belong”
http://www.stsci.edu/hst/acs/performance/calacs_cte/calacs_cte.html

WFC3 calibration (calwf3) updated for pixel-level corrections in UVIS and IR (ISR 2018-15 and ISR 2019-02) LINEAR, software for reconstructing WFC3 slitless spectroscopy, now available (ISR 2018-03) Extensive PSF library available via MAST Portal (under Select a Collection)

COS COS2025 initiative put in place in Cycle 25 aims to retain full science capability of COS/FUV out to 2025 (http://www.stsci.edu/hst/cos/cos2025). Also, new G140L/800 and G160M/1533 cenwaves have been commissioned and are available starting in Cycle 27.

STIS Updates for CALSTIS include geometric distortion, time sensitivity and blaze shift.
See stisblazefix, a tool for blaze fixing:
https://github.com/spacetelescope/stisblazefix
Wide Field Camera 3 (WFC3)

WFC3 In Brief

Ultraviolet-Visible Channel (UVIS)
- 162'' x 162'' field of view
- 62 filters: 200 - 1000 nm coverage
- 1 grism: 200-400 nm
- 0.039''/pixel

Infrared Channel (IR)
- 123'' x 136'' field of view
- 15 filters: 800 - 1700 nm coverage
- 2 grisms: 800 - 1150 nm, 1075-1700 nm
- 0.13''/pixel

Basic Modes

Direct Imaging
- high resolution imaging over the full optical and infrared wavelength range
- wide field of view in both channels
- range of broad, medium and narrow filters

Grism Spectroscopy
- low resolution slitless spectroscopy in UV & IR
- zJ & JH continuous coverage in IR
- high multiplexing
- spatially-resolved emission lines
- 10x increase in redshift accuracy over photometry

Spatial Scan Imaging
- measure changes in source position to a precision of 20-40 μas
- enables parallax distance measurements up to 5 kpc.

Dash Observing Strategy
- Enables multiple pointings per orbit in gyro guiding without re-acquiring the guide stars

Spatial Scan Spectroscopy
- best suited for stellar spectra
- high precision spectrophotometry
- spectrum perpendicular to the dispersion direction, more photon collection
- longer exposures saturation free
- transit spectroscopy
- McCullough & MacKenty 2012, ISR WFC3 2012-08
What’s new?

UVIS geometric distortion update
Geometric and fine-scale distortion solutions are now available for 34 narrow, medium and wide band UVIS filters.
Martín et al. WFC3-ISR 2018-09

Difference along the X (top panel) and the Y (bottom panel) axis between the plate scale values for every UVIS filter and the reference filter F606W, for both Chip1 (in orange) and Chip2 (in purple).

Color term transformations for WFC3 UV filters
Color term transformations for magnitudes measured on the Chip2 relative to Chip1 are now available for the UV filters F218W, F225W, and F275W. The color terms are provided as magnitude offsets as a function of spectral types.
Calamida et al. WFC3-ISR 2018-14

Time dependent IR bad pixels and dark calibration
The analysis of the bad pixels in the IR channel shows that a pixel can remain cold and stable for several years, become unstable for few years and then become again cold and stable, or warm and stable. New bad pixel tables for each of operation have been released. Pixels are flagged as cold and stable (0), unstable (32) or warm and stable (48). New high S/N dark for each year of operation are also available.

Temporal behavior of two of the IR channel pixels.
Pixel 711, 193 (left panel) remained cold and stable for the first three years of operation and the become warm and stable. Pixel 844,157 was cold and stable the first two years of operation, was unstable from 2011 to 2013, and has been cold and stable for the past 5 years.

Bad pixel table for 2016. The table includes blobs, the death star, and pixels that were either bad and unstable, or warm and stable.
Advanced Camera for Surveys (ACS)

Orion nebula
(F435W + F555W + F658N + F775W + F850LP)

Abell 370
(Frontier Fields: F435W + F606W + F814W)

Wide Field Channel (WFC) images shown above
- Optical imaging and spectroscopy (3,500–11,000 Å)
- 202'' x 202'' field of view, largest on HST
- Two 2,048 × 4,096 25 μm/pixel CCDs
- 0.05'' pixels; critically sampled at 8,000 Å
- 3 mirror design, overcoated silver on mirrors
- 13 wide, medium, and narrowband filters
- 15 ramp filters with selectable central wavelengths
- G800L grism (3,500–10,500 Å) R ~ 100 at 8,000 Å
- Polarizers optimized for UV and visible wavelengths with relative position angles 0°, 60°, and 120°

Solar Blind Channel (SBC)
- FUV imaging and spectroscopy (1150 –1700 Å)
- 35'' x 31'' field of view, 0.032'' pixels
- 1024 x 1024 CsI 25 μm/pixel MAMA
- 2 mirror design, MgF2 on Al
- 5 longpass filters, 1 Lyman α filter, 2 prisms
- PR110L, PR130L prisms R ~ 79, 96 at 1500 Å

High Resolution Channel (HRC) inoperative

More information on ACS can be found at http://www.stsci.edu/hst/acs
For more information about STScI: help@stsci.edu
For proposal information: https://hst-docs.stsci.edu/display/HSP/HST+Proposal+Opportunities+and+Science+Policies
Advanced Camera for Surveys (ACS) -continued

V-band detection limits for WFC, HRC, and SBC

<table>
<thead>
<tr>
<th>Camera</th>
<th>Filter</th>
<th>V limit (S/N = 5 in one hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>O5 V (Kurucz model)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A0 V (Vega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2 V (Sun)</td>
</tr>
<tr>
<td>WFC</td>
<td>F606W</td>
<td>27.8</td>
</tr>
<tr>
<td>WFC</td>
<td>F814W</td>
<td>26.7</td>
</tr>
<tr>
<td>HRC</td>
<td>F330W</td>
<td>26.8</td>
</tr>
<tr>
<td>HRC</td>
<td>F606W</td>
<td>27.3</td>
</tr>
<tr>
<td>SBC</td>
<td>F125LP</td>
<td>27.8</td>
</tr>
</tbody>
</table>

ACS/WFC Depth ETC Estimates

What’s new?

ACS Calibration Pipeline (CALACS) broadly updated for Cycle 27: New CTE forward model available; pixel-based CTE correction now uses amp-dependent read noise values; bias drift correction applied to select subarray modes; improved cosmic-ray rejection algorithm ACSREJ.

- 2018-01: “Accuracy of the HST Standard Astrometric Catalogs w.r.t. Gaia” (Kozhurina-Platais et al.)
- 2018-02: “Updates to Post-Flash Calibration for the Advanced Camera for Surveys Wide Field Channel” (Miles)
- 2018-03: “A Minor Contamination Event in May 2017 Affecting the ACS/WFC CCDs” (Hoffman et al.)
- 2018-04: “Improving the Pixel-Based CTE-Correction Model for ACS/WFC” (Anderson & Ryon)
- 2018-05: “Updates to the CALACS Cosmic Ray Rejection Routine: ACSREJ” (Miles et al.)
- 2018-06: “Remeasuring the ACS/WFC Absolute Gains” (Desjardins & Grogin)
- 2018-07: “Mitigating Elevated Dark Rates in SBC Imaging” (Avila et al.)
- 2018-08: “Focus-Diverse, Empirical PSF Models for the ACS/WFC” (Bellini et al.)
- 2018-09: “ACS/WFC Parallel CTE from EPER Tests” (Ryon et al.)
- 2019-02: “Post-SM4 ACS/WFC Bias I: The Read Noise History” (Desjardins)
- 2019-03: “Assessing the Accuracy of Relative Photometry on Saturated Sources with ACS/WFC” (Olaes)
Cosmic Origins Spectrograph (COS)

Far Ultraviolet (FUV):
- Medium Resolution mode:
 \[R \left(\frac{\lambda}{\Delta \lambda} \right) = 15,000-21,000 \]
 \[\lambda = 900-1800 \text{ Å} \]
 \[\lambda \text{ per exposure} = 292-360 \text{ Å} \]
- Low Resolution mode:
 \[R \left(\frac{\lambda}{\Delta \lambda} \right) = 1,500-4,000 \]
 \[\lambda = 800-2050 \text{ Å} \]
 \[\lambda \text{ per exposure} = >1150 \text{ Å} \]
- Effective area = 1800-3000 cm\(^{-2}\)
- Background = \(1.1 \times 10^{-4} \text{ cts s}^{-1} \text{ resel}^{-1}\)
- Blue modes:
 unique access to \(\lambda < 1150 \text{ Å}\), but lower resolution and throughput than standard M grating modes.
- New G140L/800 mode offers lower astigmatic height in range [800, 1150] Å

Near Ultraviolet (NUV):
- Medium Resolution mode:
 \[R \left(\frac{\lambda}{\Delta \lambda} \right) = 15,000-24,000 \]
 \[\lambda = 1700-3200 \text{Å} \]
 \[\lambda \text{ per exposure} = 3 \times 35-41 \text{ Å} \]
- Low Resolution mode:
 \[R \left(\frac{\lambda}{\Delta \lambda} \right) = 2,100-2,900 \]
 \[\lambda = 1650-3200 \text{Å} \]
 \[\lambda \text{ per exposure} = 2 \times 398 \text{ Å} \]
- Effective area = 600-750 cm\(^{-2}\)
- Background = \(7.4 \times 10^{-3} \text{ cts s}^{-1} \text{ resel}^{-1}\)
- NUV imaging mode:
 FOV area (arcsec\(^2\)) = 4.9 (un-vignetted) or 12.5 (full) Pixel Scale (arcsec) = 0.024

More information on COS can be found at http://www.stsci.edu/hst/cos
For more information about STScI: help@stsci.edu
For proposal information: https://hst-docs.stsci.edu/display/HSP/HST+Proposal+Opportunities+and+Science+Policies
The goal of COS 2025 is to retain full science capability of COS/FUV out to 2025. It places restrictions on the G130M cenwaves allowed at Lifetime Position 4 to reduce gain sag from Ly-alpha. It was put in place starting with Cycle 25.

For more information visit: http://www.stsci.edu/hst/cos/cos2025

What’s New?

G140L/800 – New cenwave setting that allows for contiguous coverage of the entire spectral region 800 - 1950 Å on a single COS detector segment (FUVA) with a low spectral height below 1150 Å, allowing higher S/N for background-limited observations. Flux calibration accuracy is ~10 – 15% in the [900, 1100] Å range, while the wavelength calibration is accurate to ~+/−3 pix.

G160M/1533 – New cenwave setting that extends coverage at the short-wavelength end of G160M by 44 Å to overlap with the longest wavelengths covered by G130M/1222. Has similar properties to the existing G160M/1577 cenwave but with the key advantage of allowing a broad range of FUV wavelengths to be covered by just two central wavelength settings (1222+1533). For full details, see the COS Instrument Handbook: http://www.stsci.edu/hst/cos/documents/handbooks/current/cos_cover.html

FUV wavelength calibration – The effort to rederive dispersion solutions for the M gratings, for all COS/FUV lifetime positions, has been completed. All M-grating dispersion solutions are now accurate to +/-0.5 resolution element, or +/-3 pix.

G285M use discouraged – Because of declining throughput, NUV observations with G285M grating are discouraged. Users interested in medium-resolution spectroscopic coverage of the 2500 – 3200 Å wavelength region are encouraged to use STIS instead.
The Hubble Spectroscopic Legacy Archive

Solar System and Exoplanets

<table>
<thead>
<tr>
<th>Sample</th>
<th>Targets</th>
<th>Files (tar.gz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Solar System (N = 32)</td>
<td>Targets</td>
<td>Download (153 MB)</td>
</tr>
<tr>
<td>Extrasolar Planets (N = 14)</td>
<td>Targets</td>
<td>Download (206 MB)</td>
</tr>
</tbody>
</table>

Galaxies and Clusters

<table>
<thead>
<tr>
<th>Sample</th>
<th>Targets</th>
<th>Files (tar.gz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Galaxies (N = 250)</td>
<td>Targets</td>
<td>Download (1.9 GB)</td>
</tr>
<tr>
<td>Starbursts (N = 95)</td>
<td>Targets</td>
<td>Download (1.2 GB)</td>
</tr>
<tr>
<td>Spirals (N = 18)</td>
<td>Targets</td>
<td>Download (107 MB)</td>
</tr>
<tr>
<td>Star Formation (N = 30)</td>
<td>Targets</td>
<td>Download (132 MB)</td>
</tr>
<tr>
<td>Dwarf Compact (N = 44)</td>
<td>Targets</td>
<td>Download (351 MB)</td>
</tr>
<tr>
<td>Emission Line (N = 25)</td>
<td>Targets</td>
<td>Download (136 MB)</td>
</tr>
<tr>
<td>Irregular (N = 8)</td>
<td>Targets</td>
<td>Download (59 MB)</td>
</tr>
<tr>
<td>Galaxy Clusters (N = 24)</td>
<td>Targets</td>
<td>Download (218 MB)</td>
</tr>
</tbody>
</table>

Stars

<table>
<thead>
<tr>
<th>Sample</th>
<th>Targets</th>
<th>Files (tar.gz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Stars (N = 521)</td>
<td>Targets</td>
<td>Download (7.5 GB)</td>
</tr>
<tr>
<td>Early Type Stars (N = 112)</td>
<td>Targets</td>
<td>Download (1.9 GB)</td>
</tr>
<tr>
<td>Late Type Stars (N = 82)</td>
<td>Targets</td>
<td>Download (1.2 GB)</td>
</tr>
<tr>
<td>White Dwarfs (N = 109)</td>
<td>Targets</td>
<td>Download (2.3 GB)</td>
</tr>
<tr>
<td>T Tauri Stars (N = 34)</td>
<td>Targets</td>
<td>Download (708 MB)</td>
</tr>
<tr>
<td>Nova and Cataclysmic Variables (N = 49)</td>
<td>Targets</td>
<td>Download (265 MB)</td>
</tr>
<tr>
<td>Post-AGB (N = 27)</td>
<td>Targets</td>
<td>Download (426 MB)</td>
</tr>
<tr>
<td>Low-Mass X-Ray Binaries (N = 7)</td>
<td>Targets</td>
<td>Download (91 MB)</td>
</tr>
<tr>
<td>Other (N = 45)</td>
<td>Targets</td>
<td>Download (834 MB)</td>
</tr>
</tbody>
</table>

QSOs, AGN, and Seyferts

<table>
<thead>
<tr>
<th>Sample</th>
<th>Targets</th>
<th>Files (tar.gz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSOs, AGN, and Seyferts (N = 628)</td>
<td>Targets</td>
<td>Download (8.8 GB)</td>
</tr>
</tbody>
</table>

Supernovae and SNRs

<table>
<thead>
<tr>
<th>Sample</th>
<th>Targets</th>
<th>Files (tar.gz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supernovae and SNRs (N = 11)</td>
<td>Targets</td>
<td>Download (304 MB)</td>
</tr>
</tbody>
</table>

Searchable, and can be sorted by many attributes

<table>
<thead>
<tr>
<th>Number</th>
<th>Target Name</th>
<th>RA (J2000)</th>
<th>DEC (J2000)</th>
<th>Epoch</th>
<th>Target Description</th>
<th>At Name</th>
<th>At Class</th>
<th>Redshift</th>
<th>MST</th>
<th>Motion SN</th>
<th>FLUV M</th>
<th>FLUV L</th>
<th>Download</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>NGC-5548</td>
<td>214.698</td>
<td>26.1388</td>
<td>784</td>
<td>GALAXY JET SAFETY</td>
<td>NGC-5548</td>
<td>G</td>
<td>0.017</td>
<td>MST</td>
<td>185.304</td>
<td></td>
<td></td>
<td>ALL</td>
</tr>
<tr>
<td>30</td>
<td>ZC-207</td>
<td>187.278</td>
<td>2.6241</td>
<td>7</td>
<td>GALAXY JET SAFETY</td>
<td>ZC-207</td>
<td>QSO</td>
<td>0.156</td>
<td>MST</td>
<td>109.669</td>
<td></td>
<td></td>
<td>ALL</td>
</tr>
<tr>
<td>233</td>
<td>MK0-590</td>
<td>211.041</td>
<td>-10.7535</td>
<td>28</td>
<td>GALAXY JET SAFETY</td>
<td>MK0-590</td>
<td>G</td>
<td>0.034</td>
<td>MST</td>
<td>103.741</td>
<td></td>
<td></td>
<td>ALL</td>
</tr>
<tr>
<td>97</td>
<td>IRAS-F15420-5718</td>
<td>66.5222</td>
<td>-57.2035</td>
<td>14</td>
<td>GALAXY JET SAFETY</td>
<td>IRAS-F15420-5718</td>
<td>G</td>
<td>0.104</td>
<td>MST</td>
<td>83.152</td>
<td></td>
<td></td>
<td>ALL</td>
</tr>
<tr>
<td>299</td>
<td>MK0-306-239</td>
<td>61.6518</td>
<td>10.1935</td>
<td>98</td>
<td>GALAXY JET SAFETY</td>
<td>MK0-306-239</td>
<td>QSO</td>
<td>0.072</td>
<td>MST</td>
<td>79.1999</td>
<td></td>
<td></td>
<td>ALL</td>
</tr>
<tr>
<td>200</td>
<td>MK0-421</td>
<td>160.114</td>
<td>38.2088</td>
<td>12</td>
<td>GALAXY JET SAFETY</td>
<td>MK0-421</td>
<td>G</td>
<td>0.000</td>
<td>MST</td>
<td>75.4871</td>
<td></td>
<td></td>
<td>ALL</td>
</tr>
</tbody>
</table>

Quicklook of co-added spectra: e.g. NGC-5548
Space Telescope Imaging Spectrograph (STIS)

FUV MAMA (Multi Anode Microchannel Array)
- 1024 x 1024 CsI detector, TIME-TAG available
- Imaging: 25" x 25" FOV, 0.025" pixels, 9 filters
- Spectroscopy: 2 first order and 2 echelle gratings
 \(\lambda = 1150 - 1740 \text{Å} \), R ~ 1000 - 200,000
 ~30 cen. wave. configurations

NUV MAMA
- 1024 x 1024 Cs$_2$Te detector, TIME-TAG available
- Imaging: 25" x 25" FOV, 0.025" pixels, 12 filters
- Spectroscopy: 2 first order and 2 echelle gratings
 \(\lambda = 1650 - 3100 \text{Å} \), R ~ 500 - 200,000
 ~55 cen. wave. configurations
- Prism spectroscopy
 \(\lambda = 1150 - 3620 \text{Å} \), R ~ 10 - 2500

CCD
- 1024 x 1024 SITE CCD detector
- Imaging: 52" x 52" FOV, 0.051" pixels, 9 filters
- Spectroscopy: 6 first order gratings
 \(\lambda = 1650 - 11,000 \text{Å} \), R ~ 500 - 10,000
 ~40 cen. wave. configurations
- Usable with coronagraphic mask and occulting bars
- Broadband imaging (2000 - 10,300 Å)
- Bar-occulted spectroscopy (2000 - 10,300 Å)

STIS offers visible and UV imaging and spectroscopy http://www.stsci.edu/hst/stis
For more information about STScI: help@stsci.edu
For proposal information: https://hst-docs.stsci.edu/display/HSP/HST+Proposal+Opportunities+and+Science+Policies
What’s new?

Geometric Distortion
- Geometric distortion correction for FUV-MAMA imaging
- Astrometric precision reduced from ~30 to ~4 mas

Time Dependent Sensitivity
- Updated corrections to the time dependent sensitivity of all spectral modes
- Improved flux calibrations up to ~8%

Blaze Shift
- Updated blaze shift for FUV E140H
- Reduces “flux mismatch” in overlapping regions from 5-10% to < 5%

Reference File Updates for CALSTIS

Blaze fix tool: stisblazefix
- Python tool for finding empirical correction to blaze shift
- Improves correction on individual spectra over CALSTIS results

More info: https://stisblazefix.readthedocs.io/

New CCD Spatial Scanning
- Overcome fringing limitations in the red to achieve high S/N (>500)
- Mode is currently “available but unsupported” — STIS team is investigating more support for Cycle 27

More info: goo.gl/p48U9S

Weak DIBs detected with STIS spatial scanning (Cordiner et al. 2017, ApJL, 843, L2)