Science in Two Gyro Mode
October 30, 2003
Topics

- Impact of Two Gyro operations on the HST Science program
 - Observations
 - Scheduling
- Concept for operational use of Two Gyro mode
- Visibility Studies
Impact of Two Gyro operations on the HST Science program

- Jitter performance in Two Gyro mode may not support all current science programs
 - Smallest aperture, highest spatial resolution programs may be affected (relatively small part of total program)
 - Potential restrictions will be better characterized after hi-fidelity PCS simulations and on-orbit tests
 - Disposition of potentially affected science programs will be made after entry into Two Gyro mode and accumulation of more extensive jitter performance data
Images under 2-gyro control

PSF: $\sigma_{\text{tot}}^2 = \sigma_{\text{intrinsic}}^2 + \sigma_{\text{jitter}}^2$

- Jitter magnitude will depend on which 2 gyros remain alive
- Direction of elongation will also depend on which 2 gyros remain alive
- Expected worst jitter ~15-30 mas
- ACS/HRC degraded
- ACS/WFC suffers small degradation
- Broad slits OK, narrow slits problematic

Diffraction-limited & high-contrast imaging will be compromised
Wide-field imaging will only suffer slightly
Science Implications – Cycle 12

- \(\text{time}_{\text{exp}} \sim \text{PSF}^2 \)
 - Rough exposure time increase vs. jitter
 - \(\sigma_{\text{jitter}}: \) 25 50 mas
 - HRC scale: 2x 7x
 - WFC scale: 1.3x 2x
 - >WFC: 1x 1.3x

- Current HST Science:
 - 91% Large (WFC) scale
 - 9% Small (HRC) scale
 - Instrument split:
 - ACS: 55%
 - NICMOS: 21%
 - STIS: 17%
 - WFPC2: 2%
 - FGS: 5%

The full science program requires:
- 1.35x exposure at \(\sigma \sim 25 \) mas
- 2.5x exposure at \(\sigma \sim 50 \) mas
Impact of Two Gyro operations on the HST Science program

- Current cycle Long-Range observing plan will be totally disrupted at entry into Two Gyro mode
- Impacts of two-gyro mode on schedulability of science program
 - **Longer Guide Star acquisition times**
 - Currently takes ~ 6.1 minutes during V1 visibility period
 - Will take ~ 10 minutes (tbr) in Two Gyro mode
 - **No Guide Star re-acquisitions, must do full acquisitions**
 - ~ 10 minutes (tbr) vs. 5 minutes
 - **Much more difficult FHST scheduling requirements**
HST Scheduling Process

- Short-Term Scheduling (SPSS/SCS, PASS)
- Mission Schedule
- Calendar (1 wk)
- Long Range Plan (1 year+)
- Proposal Implementation (APT)
- Visit
Current HST Long Range Plan

Planned Cycle 12 Resource Consumption

- Estimated Total Unplanned
- UDF
- Hi-Z SNTo0
- CDFIR
- C10/11/12 other
- COSMOS-C12
- SAA-free estimate

October 8, 2003
Based upon LRP=03280A
Scenario: Operational

Nominal Cycle 13 Start Date

Average sustainable total available ~ 11.4 orbits/day

Average sustainable SAA-free available ~ 6 orbits/day
FHST scheduling requirements

Legend:

- × = No rate control handoff allowed
- M = Map
- AC = Attitude correction

- 3 = 3-axis update, anytime between end of slew and start of GS Acq

Currently, 80% of GS Acqs have 3-axis update prior to GS Acq.
Impact of Two Gyro operations on the HST Science program

- Most current visits will not schedule due to longer Guide Star acquisition times (simple problem)
 - Packed orbits may not accommodate extra duration
 - Would require small tweaks by observers
 - Would require iteration with many observers

- Most current visits will not schedule due to FHST requirements (difficult problem)
 - GO specified scheduling requirements (ORIENT, BETWEEN, etc.) imply a time of year and roll angle restriction for visits
 - These will conflict with FHST visibility requirements
 - Will frequently require substantial redesign of observing strategy by observers
Impact of Two Gyro operations on the HST Science program

- Net result is the current science program at the time of Two Gyro mode entry will be largely unusable in the state it is in
- Developing strategy for transition from normal science program to one supported by Two Gyro mode
 - Keep HST scientifically productive
 - Get back to broad, peer-review program as soon as possible
 - Could happen at any time
Concept for use of Two Gyro mode

- Initial operations period using CVZ (continuous viewing zone) – several months
- Widen target pool with programs/visits rebuilt by observers – several months
- Full sky availability, but limited by FHST scheduling requirements –
 - Probably at next full GO cycle (requires Phase II implementation)
 - Will depend on timing of cycles relative to two-gyro entry and to SM4
Why use the CVZ?

- **CVZ provides long, continuous observing periods**
 - ~12 hours between SAA impacted orbits
 - >1 day if SAAs can be bridged with FHST coverage

- **Relatively easy to schedule initial operational tests and science observations**
 - FGS is always available, removes one scheduling constraint
 - Test and science programs are not sensitive to acquisition times, we can start with very conservative values
 - Well defined region for target selection, with 56 day repeat cycle

- **Can facilitate some performance evaluations**
 - Jitter vs. orbital effects
 - Jitter vs. Guide Star magnitude
 - Use of FHSTs to cover SAAs (possibly occultations)
Northern FGS CVZ - Nominal Roll
Science program in CVZ

- Use of CVZ will allow some advance work to be done
 - Target locations restricted
 - Any given target in the CVZ will be viewable within 56 days of entry into Two Gyro mode

- Expect to concentrate on relatively long observations to take advantage of CVZ

- Likely to be non-proprietary observations, similar to HST Treasury Programs

- Policies and processes to be worked with:
 - Space Telescope Users Committee (November 7)
 - Astronomy community
 - HSTP
Widening target pool

- Start with T2G coverage of SAA passages during CVZ observing
- Adjust timing restrictions for FHST coverage based on performance evaluation
- Re-work applicable GO programs to adapt to guide star acquisition times and FHST scheduling requirements
- Begin scheduling non-CVZ visits as they are available and can be scheduled
Visibility Studies

- Current scheduling process is a result of 13 years of experience with HST
- Developing Two-gyro scheduling experience via three studies
 - CVZ scheduling study
 - All-sky target availability study
 - Current cycle scheduling study
CVZ Scheduling Study

- Status: Nearly complete; need to complete analysis of the effect of changing the timings and to write up the final results
- Built upon earlier work done to evaluate the potential of using the CVZ as a way of achieving relatively high observing efficiency
- Evaluated using the north and south CVZs for early operations
 - Evaluated the ability to cover SAA passages with FHST availability
 - Estimated how many orbits are schedulable and how many will be lost due to uncovered SAA passages
 - Number of usable orbits varies from ~7 to 15 orbits per day
 - A scheduling efficiency >~ 50% is implied
 - Evaluated the level of scheduling flexibility available (via off-nominal roll, etc.) to adjust these uncovered periods
- Results of study can be used to evaluate potential early two-gyro science programs
All-Sky Target Availability Study

- **Status:** In progress; proposals / targets to be used have been written; expect to be completed by the end of the year
- **Assess the availability of targets across the entire sky**
 - Driven by FHST scheduling restrictions
 - Provide basic information about when and how various portions of the sky are accessible
 - Instantaneously, expect <50% of the sky to be available (predominantly due to FGS / FHST visibility synchronization)
- **Perform schedulability sensitivity studies**
 - Vary worst case pointing error in M2G / T2G
 - Vary FHST durations and timings for transitions from T2G to F2G
- **Utilize SPIKE and other tools to evaluate a grid of targets over the entire sky, comparing the results to nominal operations**
- **Provides insight into how much of any pre-existing observational program could be supported**
Current Cycle Scheduling Study

- **Status:** Start early next year
- **Evaluate** what fraction of an entire cycle could be scheduled using a representative pool of observations
- **Results** will help determine the observing policies that the STScI would put in place to support two-gyro mode
 - If only a few typical cycle observations can be scheduled as originally requested, then it is likely that development of a new observing program would be necessary ASAP (while carrying out an interim CVZ campaign)
 - If a substantial fraction can be scheduled in two-gyro mode, then more time to respond will be available, and potentially a new program could simply be brought in with the next planned observing cycle
- **Details** are to be defined as previous studies are completed