Promises huge science gains for the community

- Two powerful new science instruments, COS & WFC3.
- Repairs to STIS & ACS
- Refurbished FGS
- Engineering improvements

If all goes to plan, Hubble will be at the peak of its power.

At STScI, we have plans well in-hand as we prepare for this exciting observing Cycle.
I will describe: Tests of our post-SM4 scheduling system; Preps for SM4 SI verification (SMOV4); training of staff for WFC3, COS & STIS; computing infrastructure upgrades; and GO preparations for Cycle 17.
ATLANTIS - the primary research vessel for Woods Hole Oceanographic Institute, from 1930 to 1966
GO schedule

Schedule:

- Cycle 17 CP release - 3 Dec 2007
 - includes CP, Primer, Handbooks, webs, GTO targets
- APT Phase I release January 7
- AAS meeting January 2008, includes HST Special Session on 1/8/08
- Deadline - 7 March 2008
- TAC meets - 12 - 16 May
- Notification Letters to GOs - 23 May
- Phase II GO and GTO deadline - 3 July
- LAUNCH - August 7
- SMOV - starts soon thereafter
- Cycle 17 observations by ~ November

SM4 Design Reference Mission

Purpose: demonstrate that the ground system functions on a representative sample of post-SM4 HST proposals in 3-Gyro mode

- 830 external orbits, from WFC3, ACS, NICMOS, STIS, COS and FGS
- Proposal creation & implementation
- Long Range Plan generation
- Weekly science schedule generation
- SMS generation
- Restricted to 07.260-07.330 – most visits schedulable over full time frame.
- Scheduled SNAPS and Parallels using normal process.
- Selected guide stars.
SM4 DRM Scheduling results

<table>
<thead>
<tr>
<th>SMS</th>
<th>LRP</th>
<th>real</th>
<th>COS</th>
<th>WF3</th>
<th>STIS</th>
<th>ACS</th>
<th>NIC</th>
<th>FGS</th>
<th>pars</th>
<th>snaps</th>
<th>eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>07260</td>
<td>93</td>
<td>74</td>
<td>38</td>
<td>36</td>
<td>18</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>24</td>
<td>18</td>
<td>50%</td>
</tr>
<tr>
<td>07267</td>
<td>82</td>
<td>78</td>
<td>17</td>
<td>44</td>
<td>13</td>
<td>17</td>
<td>3</td>
<td>0</td>
<td>44</td>
<td>3</td>
<td>44%</td>
</tr>
<tr>
<td>07274</td>
<td>73</td>
<td>70</td>
<td>8</td>
<td>36</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>43</td>
<td>12</td>
<td>45%</td>
</tr>
<tr>
<td>07281</td>
<td>80</td>
<td>77</td>
<td>31</td>
<td>24</td>
<td>1</td>
<td>4</td>
<td>14</td>
<td>6</td>
<td>27</td>
<td>8</td>
<td>45%</td>
</tr>
<tr>
<td>07288</td>
<td>79</td>
<td>80</td>
<td>27</td>
<td>38</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>5</td>
<td>46</td>
<td>11</td>
<td>44%</td>
</tr>
<tr>
<td>07295</td>
<td>86</td>
<td>82</td>
<td>48</td>
<td>12</td>
<td>11</td>
<td>35</td>
<td>1</td>
<td>5</td>
<td>52</td>
<td>5</td>
<td>44%</td>
</tr>
<tr>
<td>07302</td>
<td>77</td>
<td>75</td>
<td>33</td>
<td>40</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>11</td>
<td>45%</td>
</tr>
<tr>
<td>07309</td>
<td>95</td>
<td>83</td>
<td>38</td>
<td>41</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>33</td>
<td>3</td>
<td>50%</td>
</tr>
</tbody>
</table>

- Eight-week average: 83 orbits, 45.7% efficiency
- Recent (Cycle 12/13) 3-gyro average: 81 orbits, 48% efficiency
- Efficiency difference due to use of SAA-hiders during test period
SMOV 4

- A Servicing Mission Orbital Verification (SMOV) program is associated with each servicing mission, with goals
 - Timely recommissioning of the Observatory for science operations
 - Commission newly installed science instruments
 - Recommission existing science instruments
 - Re-commission Observatory systems for normal operations
 - Validation of other on-orbit replacements & installations
 - Early Release Observations
 - Demonstrate upgraded science capabilities to astronomical community and general public

- Example of the testing in SMOV, for Wide Field Camera 3
 - Engineering Verification
 - Boot, hold, operate, observe; On-board computer memory check; Operate science data buffer; Move mechanisms; Operate calibration lamps; Aliveness of detectors, cooling
 - Optical verification
 - Measure image quality; Pointing stability; Image ghosts and extended wings
 - Calibration
 - Plate scale, orientation, geometric distortion; Dark rate, read noise and CTE; Behavior through SAA monitored; Sensitivity vs wavelength; Flat field uniformity
SMOV 4

- Joint STScI/Project team
 - SMOV Leads
 - Biagetti/STScI, Burley/GSFC (SMOV Leads)
 - SI/Subsystem Leads
 - Mackenty/Turnbull (WFC3), Keyes (COS), Proffitt (STIS), Sahu/LSmith (ACS), Nelan (FGS), Lallo (OTA), Wiklind (NICMOS), DSMith/GSFC (PCS), Abel/GSFC (TCS), Noll (ERO), Krol/GSFC (EPS)

- SMOV Project Review = Oct. 12
 - Basic plan reviewed and approved by NASA Project

- Remaining schedule outline and milestones
 - Today through Aug 2008: SMOV Implementation Phase - Proposal generation/iteration; ERO program; Operations planning
 - Starting in June 2008: Start scheduling of proposals
 - In July 2008: GSFC Launch Readiness (FRR) &
 - STScI SM4/SMOV Readiness Review
 - 07 Aug 2008: SM4 Launch
 - 15 Aug 2008 to ~Dec 2008: SMOV4
 - Feb 2009: SMOV4 Closure Review
SMOV 4 Schedule

- Bright Earth Avoidance (BEA) period ends 21 days after Release
 - With some BE allowances in Weeks 2 & 3
- Proceed with commissioning of existing SIs while new ones out-gass
 - Use BEA period for SI/Subsystem engineering check
- FGS2R2 – Start commissioning prerequisites early using BEA-compatible targets and BEA allowances
 - Allows relief to FGS3 guiding asap
- STIS – Use BEA-compatible targets for early commissioning activities
- Start NCS early for NICMOS cool-down
 - 2-week cooldown assumed for planning purposes
- Commission new SIs after outgassing period
SMOV 4 Resource estimates

<table>
<thead>
<tr>
<th>SMOV ACTIVITIES</th>
<th>EXTERNAL ORBITS</th>
<th>INTERNAL ORBITS</th>
<th>PARALLE ORBITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS</td>
<td>4</td>
<td>27</td>
<td>n/a</td>
</tr>
<tr>
<td>FGS</td>
<td>13</td>
<td>35</td>
<td>n/a</td>
</tr>
<tr>
<td>WFC3</td>
<td>40</td>
<td>132</td>
<td>tbd</td>
</tr>
<tr>
<td>COS</td>
<td>36</td>
<td>145</td>
<td>100</td>
</tr>
<tr>
<td>STIS</td>
<td>26</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>ACS</td>
<td>16</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>NICMOS</td>
<td>14</td>
<td>56</td>
<td>35</td>
</tr>
<tr>
<td>ERO</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
<tr>
<td>Total</td>
<td>149</td>
<td>490</td>
<td>190</td>
</tr>
</tbody>
</table>
SMOV 4 External orbits - very preliminary

POST-BEA EXTERNAL ORBITS

POST-BEA WEEK

ORBITS

PCS
NICMOS
STIS
ACS
COS
WFC3
SM4 Training exercise

- **Purpose** - develop and spread knowledge of the new instruments and remind ourselves about the to-be-repaired instruments
- **Aim** - is to have staff trained by spring 2008 so that we can operate the SM4 instruments safely, efficiently, and in an optimal scientific manner
- **Audience** - all staff directly involved in working on the science operations of the SM4 instruments
- **Format** - Various - hands-on, and bi-weekly round table discussion & lectures.
- **Syllabus** - Overview
 - For COS and WFC3, 3 lectures on Instrument Descriptions and Detectors, 2 Round-table discussions on Science Operations, and 2 talks on Instrument Calibration and typical Observing Plans
 - Plus - 2 general talks on Lessons already Learned, and Parallel observing in SM4.
 - Reduced length for STIS
- **Schedule** - STIS starting end-October, COS in November-December 2007, and WFC3 start January 2008, to be completed by Cycle 17 Phase 2 receipt.
SM4 Training exercise

• Syllabus details
 • Lecture (INS lead) - Instrument description - basics from Handbook
 • Optical path and layout, optical elements, FoVs & geometric distortion, science, instrument comparisons,
 • Lecture (INS lead) - Instrument description - details from Handbook
 • Filter anomalies, ghosts, red leaks, quad filters, use of special apertures
 • Lecture (INS lead) - Detectors
 • Types, how they work, read-out formats, quality issues, bad pixels, bright objects, CTE, lifetime issues, anomalies
 • Round Table discussions (INS, EOD, with commanding and TRANS)
 • science operations: patterns/sequences, read-outs, time-tag, dithers & multi-drizzle techniques, overheads, target acquisitions, SI reconfigurations,
 • operations - part two: CARD walk through, including CAL channel, safe-mode recoveries, SI reconfigurations
 • Talk on Instrument Calibration & SMOV
 • SI characterization; Calibration files & tables, final calibration products, any calibration concerns
 • Talk on typical observing planning
 • Talk on Lessons already Learned
 • Ground system testing, Thermal Vacs, SMGTs, SMOV prep
 • Round Table discussion on Parallels in Cycle 17
Computer Network upgrade at STScI

- Project goal is to provide a reliable, secure data storage environment for HST Mission information.
 - Reliable and timely backups is a major part of this goal.
 - Increased off-site storage and recovery.
 - Examples of HST Mission Information:
 - Calibration Reference Files
 - DA/IS intermediate processed data files
 - Data analysis scripts, test files, etc.
 - Increases in data volume had eroded existing decentralized model for data storage, data sharing, and backups.
 - The Institute’s data volume appears to double every 12-18 months.
 - The SM4 Instruments will add to this increase.
Network upgrade and central storage

Solution that is currently being implemented

- Centralized network attached storage (NAS) and content addressable storage (CAS) devices.
 - NAS populated with 50TB usable (300 TB max.)
 - CAS populated with 10TB usable (40 TB max.)
- Data backups are cached to a disk library, then transferred to tape.
 - Decreases time that data disks are affected by backup process.
 - Possible to restore from cache without tape restore.
- Portions of internal network upgraded to support 1Gbps to the desktop.
 - Major portion of building upgraded to CAT 6e cable.
 - Internal Backbone upgraded to 10 Gbps.
 - Network switches upgraded to provide 120 1Gbps connections.
 - Provides for better performance in accessing centralized data.
Network upgrade and central storage

Status

- Network upgrades completed
 - 95 1Gbps connections in use
 - Remaining are assigned and waiting 1Gbps capable equipment.
- Central Storage HW configuration Completed
- Data Migration to Central Storage
 - SI Teams currently moving to central storage.
 - Currently populated with 12 TB data from 28 systems.
 - 87 /user areas available on central store
 - 26 HST critical users actively using /user areas.
 - 31 additional HST critical users scheduled to transition by 11/09.
- /grp area contains data from OTA, ACS, WFC3, and WFPC2.