Science Policies Update

STUC

15 June 2009
• Cycle 16 Supplement Summary
• NICMOS & ACS/HRC Proposals
• Cycle 18 Schedule
• Medium Sized Proposals in Cycle 18
C16 Supplement Summary

- The rescheduling of SM4 led to an extension of C16 by \(~6\) months
- Remaining C16 visits had been exhausted
- Insufficient number of C17 visits that could be brought forward
- NICMOS visits could not execute because of cryocooler failure
- Issued **Call for Supplementary Proposals on November 17, 2008**
• Phase I deadline: December 8, 2008
• Received **280 valid proposals** (269 GO, 11 SNAP) for 16081 orbits and 1085 targets
• NICMOS proposals were subsequently deferred
• Supplementary proposals do not carry over to C17

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Proposals</th>
<th>% of orbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>FGS</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>NICMOS</td>
<td>75</td>
<td>21</td>
</tr>
<tr>
<td>WFPC2</td>
<td>168</td>
<td>66</td>
</tr>
</tbody>
</table>
• Oversubscription: 17:1
• 2-stage review; process dictated by time constraints
• 27 panel members; Chair: Rob Kennicutt
• Stage 1: submission of grades to rank order all proposals (4 reviewers per proposal)
• Stage 2: ranking of the top 15%. Grading by 9 – 11 panelists for small (< 75 orbits) and by all panelists for large (> 75) proposals
• Final selection by the Director on 1/13/09
17 programs with a total of 960 orbits selected

<table>
<thead>
<tr>
<th>PI Firstname</th>
<th>PI Lastname</th>
<th>PI Institution</th>
<th>Phase ID</th>
<th>Science Category</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sahar</td>
<td>Allam</td>
<td>Fermi National Accelerator Laboratory (FNAL)</td>
<td>11974</td>
<td>Cosmology</td>
<td>High-resolution imaging for 9 very bright, spectroscopically confirmed, group-scale lenses</td>
</tr>
<tr>
<td>Scott</td>
<td>Anderson</td>
<td>University of Washington</td>
<td>11982</td>
<td>Quasar Absorption Lines</td>
<td>Spanning the Reionization History of IGM Helium: a Large and Efficient HST Spectral Survey of Far-UV-Bright Quasars</td>
</tr>
<tr>
<td>Rupali</td>
<td>Chandar</td>
<td>University of Toledo</td>
<td>11988</td>
<td>Resolved Stellar Populations</td>
<td>Searching for Intermediate Mass Black Holes in Globular Clusters via Proper Motions</td>
</tr>
<tr>
<td>John</td>
<td>Clarke</td>
<td>Boston University</td>
<td>11970</td>
<td>Solar System</td>
<td>HST Observations of Titan's Escaping Atmosphere in Transit and in Emission</td>
</tr>
<tr>
<td>Geoffrey</td>
<td>Clayton</td>
<td>Louisiana State University and A & M College</td>
<td>11985</td>
<td>ISM and Circumstellar Matter</td>
<td>Polarimetric WFPC2 Imaging of the Dust Torus around the Born-Again Star V605 Aquilae</td>
</tr>
<tr>
<td>Julianne</td>
<td>Dalcanton</td>
<td>University of Washington</td>
<td>11986</td>
<td>Unresolved Stellar Populations and Galaxy Structure</td>
<td>Completing HST's Local Volume Legacy</td>
</tr>
<tr>
<td>Francesco</td>
<td>Ferraro</td>
<td>Universita di Bologna</td>
<td>11975</td>
<td>Hot Stars</td>
<td>UV light from old stellar populations: a census of UV sources in Galactic Globular Clusters</td>
</tr>
<tr>
<td>Paul</td>
<td>Kalas</td>
<td>University of California - Berkeley</td>
<td>11979</td>
<td>Exoplanets</td>
<td>WFPC2 Imaging of Fomalhaut b: Determining its orbit and testing for H-alpha emission</td>
</tr>
<tr>
<td>Jesus</td>
<td>Maiz Apellaniz</td>
<td>Instituto de Astrofisica de Andalucia (IAA)</td>
<td>11981</td>
<td>Resolved Stellar Populations</td>
<td>FUV imaging survey of Galactic open clusters</td>
</tr>
<tr>
<td>Karen</td>
<td>Meech</td>
<td>University of Hawaii</td>
<td>11972</td>
<td>Solar System</td>
<td>Investigating the Early Solar System with Distant Comet Nuclei</td>
</tr>
<tr>
<td>Jonathan</td>
<td>Nichols</td>
<td>University of Leicester</td>
<td>11984</td>
<td>Solar System</td>
<td>Observing Saturn's high latitude polar auroras</td>
</tr>
<tr>
<td>Michael</td>
<td>Regan</td>
<td>Space Telescope Science Institute</td>
<td>11987</td>
<td>Unresolved Stellar Populations and Galaxy Structure</td>
<td>The Recent Star Formation History of SINGS Galaxies</td>
</tr>
<tr>
<td>Massimo</td>
<td>Roberto</td>
<td>Space Telescope Science Institute</td>
<td>11983</td>
<td>Star Formation</td>
<td>An Imaging Survey of Protoplanetary Disks and Brown Dwarfs in the Chamaeleon I region</td>
</tr>
<tr>
<td>Nathan</td>
<td>Smith</td>
<td>University of California - Berkeley</td>
<td>11977</td>
<td>ISM and Circumstellar Matter</td>
<td>WFPC2 12-Year Proper Motions of Two Galactic Analogues of the SN1987A Rings</td>
</tr>
<tr>
<td>Bringfried</td>
<td>Stecklum</td>
<td>Thuringer Landessternwarte Tautenburg (TLS)</td>
<td>11976</td>
<td>Star Formation</td>
<td>Particle separation in and expansion of the dust arcs of the young star V1331 Cyg</td>
</tr>
<tr>
<td>Tommaso</td>
<td>Treu</td>
<td>University of California - Santa Barbara</td>
<td>11978</td>
<td>Cosmology</td>
<td>Luminous and dark matter in disk galaxies from strong lensing and stellar kinematics</td>
</tr>
<tr>
<td>Sylvain</td>
<td>Veilleux</td>
<td>University of Maryland</td>
<td>11980</td>
<td>ISM in External Galaxies</td>
<td>Deep FUV Imaging of Cooling Flow Clusters</td>
</tr>
</tbody>
</table>
• Completion status by the end of C16: ~78%

<table>
<thead>
<tr>
<th>PEPSI ID</th>
<th>PI last name</th>
<th>Title</th>
<th>Instruments</th>
<th>Allocated</th>
<th>Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>11970</td>
<td>Clarke</td>
<td>HST Observations of Titan's Escaping Atmosphere in Transit and in Emission</td>
<td>ACS</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>11972</td>
<td>Meech</td>
<td>Investigating the Early Solar System with Distant Comet Nuclei</td>
<td>WFPC2</td>
<td>85</td>
<td>65</td>
</tr>
<tr>
<td>11974</td>
<td>Allam</td>
<td>High-resolution imaging for 9 very bright, spectroscopically confirmed, group-scale lenses</td>
<td>WFPC2</td>
<td>81</td>
<td>57</td>
</tr>
<tr>
<td>11975</td>
<td>Ferraro</td>
<td>UV light from old stellar populations: a census of UV sources in Galactic Globular Clusters</td>
<td>WFPC2, ACS</td>
<td>177</td>
<td>133</td>
</tr>
<tr>
<td>11976</td>
<td>Stecklum</td>
<td>Particle separation in and expansion of the dust arcs of the young star V1331 Cyg</td>
<td>WFPC2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>11977</td>
<td>Smith</td>
<td>WFPC2 12-Year Proper Motions of Two Galactic Analogs of the SN1987A Rings</td>
<td>WFPC2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11978</td>
<td>Treu</td>
<td>Luminous and dark matter in disk galaxies from strong lensing and stellar kinematics</td>
<td>WFPC2</td>
<td>91</td>
<td>68</td>
</tr>
<tr>
<td>11979</td>
<td>Kalas</td>
<td>WFPC2 Imaging of Fomalhaut b: Determining its orbit and testing for H-alpha emission</td>
<td>WFPC2</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>11980</td>
<td>Veilleux</td>
<td>Deep FUV Imaging of Cooling Flow Clusters</td>
<td>ACS</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>11981</td>
<td>Maiz Apellaniz</td>
<td>FUV imaging survey of Galactic open clusters</td>
<td>WFPC2</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>11982</td>
<td>Anderson</td>
<td>Spanning the Reionization History of IGM Helium</td>
<td>ACS</td>
<td>80</td>
<td>62</td>
</tr>
<tr>
<td>11983</td>
<td>Robberto</td>
<td>An Imaging Survey of Protoplanetary Disks and Brown Dwarfs in the Chamaeleon I region</td>
<td>WFPC2</td>
<td>75</td>
<td>40</td>
</tr>
<tr>
<td>11984</td>
<td>Nichols</td>
<td>Observing Saturn's high latitude polar auroras</td>
<td>ACS</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>11985</td>
<td>Clayton</td>
<td>Polarimetric WFPC2 Imaging of the Dust Torus around the Born-Again Star V605 Aquilae</td>
<td>WFPC2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>11986</td>
<td>Dalcanton</td>
<td>Completing HST's Local Volume Legacy</td>
<td>WFPC2</td>
<td>138</td>
<td>112</td>
</tr>
<tr>
<td>11987</td>
<td>Regan</td>
<td>The Recent Star Formation History of SINGS Galaxies</td>
<td>WFPC2</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>11988</td>
<td>Chandar</td>
<td>Searching for Intermediate Mass Black Holes in Globular Clusters via Proper Motions</td>
<td>WFPC2</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>
NICMOS and ACS/HRC Proposals

- Notifications were sent out to PIs of programs using instrument modes that will or may not be available in Cycle 17
• **NICMOS**: the failure of the cryocooler leaves a number of C15, C16, C17 programs using NICMOS incomplete

• 41 programs totaling **767 orbits** affected

• 72% of these orbits are from C15 and C16

• It is unknown whether NICMOS will become available again

• The WFC3 group made assessment whether the affected programs can switch to WFC3 or a different instrument
• PI notifications on 3/25/09:
 – Terminate programs with > 90% completeness (4 programs / 10 orbits)
 – Can only use NICMOS and will terminate if NICMOS will remain unavailable (9 / 59)
 – Can be executed with WFC3 without science loss and possible orbit savings (18 / 334); conversion results in savings of 75 orbits
 – Science goals may be reached after conversion but PIs need to submit justification (10 / 364)
• In all cases, PIs were given the possibility to appeal via the TTRB
• PIs were told that the decision must be made now and must not be changed in the future in order not to disrupt the long-range plan
• Revised Phase 2 submissions were received by early May
• As of June 6, 2009, we have 8 NICMOS programs with a total of 74 orbits left for Cycle 17
• **ACS/HRC**: the ACS HRC channel could not be restored during SM4
• **31 programs totaling 510 orbits** affected
• The WFC3 and ACS groups made assessments whether the affected programs can switch to WFC3 or ACS/WFC or a different instrument
• PI notifications on 6/1/09:
 – Can be executed with WFC3 or ACS/WFC without science loss and possible orbit savings (19 programs / 435 orbits); conversion results in savings of 1 orbit
 – Science goals may be reached after conversion but PIs need to submit justification (12 / 75)

• Deadline: July 1, 2009 (still ongoing)
Cycle 18 Schedule

- Prior to SM4 slip, the C18 TAC was planned to be held in September 2009
- All dates slip with SM4 (i.e., by 9 months)
- Call for Proposals: December 2009
- Phase I deadline: March 2010
- TAC and Panel meetings: May 2010
- Phase II deadline: July 2010
TAC Organization

- TAC and Panel meetings: 17 – 21 May, 2010
- Location: STScI and JHU
- Timing constraint: after JHU finals and prior to commencement
- TAC Chair: Neta Bahcall (Princeton)
- SPG will work with the TAC Chair to select the Panel Chairs in July/August
- Note: there will be 6 instead 5 ExGal panels
Medium Sized Proposals in Cycle 18

- Feedback from the C17 panels suggests a concern that medium sized proposals (50 – 99 orbits) are less likely to be accepted than small or large proposals
- Applies in particular to the solar system and stellar panels
- Hot star panel: the community even hesitates to submit medium sized proposals because of perceived low chance of success
Acceptance Fraction by Size

Includes 3 Treasury programs approved by the TAC
• Current orbit subsidy applied in the panels:
<table>
<thead>
<tr>
<th>Orbits</th>
<th>Cost to Panel</th>
<th>Orbits</th>
<th>Cost to Panel</th>
<th>Orbits</th>
<th>Cost to Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>36</td>
<td>24</td>
<td>71</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>37</td>
<td>25</td>
<td>72</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>38</td>
<td>25</td>
<td>73</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>39</td>
<td>25</td>
<td>74</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>40</td>
<td>26</td>
<td>75</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>41</td>
<td>26</td>
<td>76</td>
<td>39</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>42</td>
<td>26</td>
<td>77</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>43</td>
<td>27</td>
<td>78</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>44</td>
<td>27</td>
<td>79</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>45</td>
<td>27</td>
<td>80</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>46</td>
<td>28</td>
<td>81</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>47</td>
<td>28</td>
<td>82</td>
<td>42</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>48</td>
<td>28</td>
<td>83</td>
<td>42</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>49</td>
<td>29</td>
<td>84</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>50</td>
<td>29</td>
<td>85</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>51</td>
<td>29</td>
<td>86</td>
<td>44</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>52</td>
<td>29</td>
<td>87</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>53</td>
<td>30</td>
<td>88</td>
<td>45</td>
</tr>
<tr>
<td>19</td>
<td>17</td>
<td>54</td>
<td>30</td>
<td>89</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>55</td>
<td>30</td>
<td>90</td>
<td>46</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>56</td>
<td>30</td>
<td>91</td>
<td>47</td>
</tr>
<tr>
<td>22</td>
<td>19</td>
<td>57</td>
<td>31</td>
<td>92</td>
<td>48</td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>58</td>
<td>31</td>
<td>93</td>
<td>48</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>59</td>
<td>31</td>
<td>94</td>
<td>49</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>60</td>
<td>31</td>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>26</td>
<td>21</td>
<td>61</td>
<td>32</td>
<td>96</td>
<td>51</td>
</tr>
<tr>
<td>27</td>
<td>21</td>
<td>62</td>
<td>32</td>
<td>97</td>
<td>52</td>
</tr>
<tr>
<td>28</td>
<td>22</td>
<td>63</td>
<td>33</td>
<td>98</td>
<td>53</td>
</tr>
<tr>
<td>29</td>
<td>22</td>
<td>64</td>
<td>33</td>
<td>99</td>
<td>54</td>
</tr>
<tr>
<td>30</td>
<td>22</td>
<td>65</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>23</td>
<td>66</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>23</td>
<td>67</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>23</td>
<td>68</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>24</td>
<td>69</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>24</td>
<td>70</td>
<td>36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Suggestions for increasing the acceptance fraction:
 – Add medium sized proposals to the TAC pool of Large programs (not recommended)
 – Lower the boundary between Large and Medium/Small proposals to 75 from 100
 – Make it mandatory for each panel to approve at least one medium sized proposal
 – Allocate more orbits to a panel if a medium sized proposal is approved (20?)
 – Modify the subsidy progression
• **We seek your input!**

 – Are medium sized proposals at a disadvantage?
 – Do medium-sized proposals support science that cannot be done with small or large proposals?
 – If so, how can we make sure they receive their fair share of orbits?