COS Installation

On May 16, 2009 COS was successfully installed on Hubble during EVA 3 of SM4.
Agenda

- SMOV Overview
- Instrument Performance
- Cycle 17 Calibration Plan
- Cycle 18 User Support
SMOV Overview

- 34 SMOV programs designed to characterize COS on-orbit performance and ability to carry on science program
- SMOV was joint (50-50) effort between STScI COS team and COS IDT
- Completed end of Sep 2009 (~ 3.5 months)
- Nearly 2,800 individual exposures for a total of 156 internal & 259 external SMOV orbits
- First COS ERO data on Aug 2, 2009
- COS released for science on week of Sep 14, 2009

COS is performing as expected!
Active Galaxy Markarian 817

Weaker outflow of gas from active galactic nucleus compared with 1997 data.
COS Sensitivity

- Superb in FUV
- Comparable to STIS in NUV
- NUV sensitivity in G225M & G285M is as expected at launch from grating degradation
- Within 20% of ground values
COS has Sensitivity Down to the Lyman Limit

Aloisi – 12 November 2009
Slide 7 of 24
COS LSF

- COS LSF measured on orbit with HST OTA deviates from profile measured on the ground
- inclusion of mid frequency zonal “polishing” wave-front errors (WFE) from OTA provides better fit to on-orbit data

Krist & Borrows 1995, Applied Optics
COS FUV LSF

- LSF power is distributed from core to wings due to MFWFEs
- Effect is wavelength dependent, being most extreme in the FUV
- $R \sim 16,000$ vs $20,000$ @ 1300 Å

Ghavamian et al. 2009,
COS ISR 2009-01

FUV spectral resolution not quite good as expected
A Spectral Comparison

Aloisi – 12 November 2009
Slide 10 of 24
A Spectral Comparison

Image of a graph showing spectral comparison between Sk 155 and COS G130M.

Flux (10^-12 erg/cm^2/s/Å)

Wavelength (Å)

Aloisi – 12 November 2009
Slide 11 of 24
COS NUV LSF

- Contribution of WFE present in NUV
- Almost negligible longward of 2500 Å

Ghavamian et al. 2009, COS ISR 2009-01

NUV spectral resolution at $\lambda > 2500$ Å as expected
COS Detector Darks

- FUV Dark rate away from the SAA is ~15 counts/sec per segment, which is around prelaunch predictions.

- NUV Dark rate away from the SAA is ~65 counts/sec, which is significantly below prelaunch predictions (~225 cts/sec).

- Dark rate near the SAA can be substantially higher, particularly on the western edge.

- The SAA model should be modified in order to better reflect the actual count rate distribution with position in the orbit.
COS NUV Dark Evolution

- Dark count has increased from ~70 cts/sec over entire detector area to showing signs of leveling off ~150 cts/sec in mid Oct 2009
- Possibly increased population of metastable states in detector faceplate
- Remains below initial predictions
COS NUV Flat

- NUV on-orbit flat (internal lamp) confirmed that ground flat (with higher S/N) can be used for flat field calibration
- Vignetting (up to 15-20%) in first 200 pixels on detector as observed on orbit now corrected in flat field
- NUV flat field correction currently applied in CALCOS
NUV High S/N

COS can achieve S/N > 30 per 3-pixel resel with single exposure and flat field calibration

COS can achieve S/N >100 per 3-pixel resel with 4 FP-POS positions and flat field calibration

Poisson S/N can be recovered up to ~ 70
COS FUV Flat

FUV flats composed by:

1. Equivalent of “pixel-to-pixel” variations in MCP
2. Fixed pattern noise (hexagonal multifiber boundaries) in MCP
3. Grid wires above MCP

Vallerga et al. 2001, SPIE 4498, 141
COS FUV Flat (ctd)

- 2D ground flats (Berkeley + TV03)
 - still to be validated with on-orbit data
 - currently not in use for flat fielding
- Analysis of SMOV data to create 2D flats with observations of external sources still in progress
 - Pulse-height dependence observed
 - Grating dependence observed
- Currently investigating detector walk effect in cross-dispersion direction (~ 3-5 pixels) as cause of apparent pulse-height and grating dependence of 2D flats
- FUV flat field correction currently not applied in CALCOS
Demonstrated ability to achieve S/N > 30 per 6-pixel resel with different FP-POS positions.

Demonstrated capability to achieve S/N > 100 per 6-pixel resel with 4 FP-POS positions and iterative 1D flat fielding technique.
COS Wavelength Calibration

- In the process of measuring on-orbit wavelength zeropoints compared to ground calibration
- Used high-resolution STIS echelle spectra for comparison when possible
- Relative agreement between COS and STIS ~ 1 pixel (0.0010 Å)
- Absolute STIS wavelength accuracy ~ 0.5-1 pixel (0.0056 Å)
COS Target Acquisition (TA)

- COS only spectrograph with TA in UV
- All 3 TA methods tested and working as planned:
 - NUV imaging
 - NUV dispersed light
 - FUV dispersed light
- New recommendation of SNR=60 for TA in imaging mode with BOA
COS Blind Pointing Analysis

- Now including all centering slews in all TA sequences
- Cumulative centroid continues to be at approximately +0.3 arcsec in both along-dispersion (AD) and cross-dispersion (XD) directions; sigma ~0.4 arcsec in both coordinates
- No clear indication of time evolution of centroid
COS Cycle 17 Calibration Plan

- Already includes calibration monitoring programs for:
 - Dark rates
 - Throughputs
 - Internal/external wavelength scale

- Supplemental programs with special calibrations following SMOV to be defined for Jan 2009; these may include:
 - Characterization of FUV G140L segment B sensitivity (900-1150 Å)
 - Focus checks
 - Semi-annual NUV grating efficiency test
 - Additional FUV flat field data
COS Cycle 18 User Support

- Major revision of COS IHB with updates from SMOV analysis results; to be published in Jan 2010
- APT 18.0 updates:
 - Added G140L new central wavelength 1250 setting
 - (new setting avoids zero-order light of 1230 at FP-POS=4)
 - Made G140L central wavelength 1230 setting engineering only
 - Made FP-POS = AUTO engineering only (to avoid confusion between total exposure time and single exposure buffer time)
- ETC 18.0 updates:
 - New sensitivities
 - New wavelength ranges
 - Support of FUV G140L 1230 Segment B (still in the work)