HST2025 – Preparing the ground

John MacKenty

STUC – 14 May 2019
Background

• SM4 was designed to achieve a 5 year extension of HST science (i.e. 2009-2014)

• HST2020 Vision was a process to consider options for science until 2020 (almost there!)
 • UV Initiative
 • JWST preparations
 • COS 2025
 • ULLYSES

• Best engineering analysis predicts ~80% probability of science operations beyond 2025

• This talk to start discussion with STUC: What are some of the issues that need to be considered to make the most of this potentiality?
Three broad areas to consider

• Science
 • Exoplanets
 • Transients
 • Large Programs
 • JWST
 • Archives

• HST Performance
 • Pointing Control System
 • Science Instruments
 • Other issues

• Budget
Science Changes: Increasing demand for Exoplanets

- Growing science community provides increased proposal pressure
- HST has unique strengths but relative values shift with new facilities
- Synergy with JWST observations (e.g. UV and Visible)
- TESS discoveries
 - Need to validate sources prior to JWST observations?
 - Advisory committee in place (Daniel Apai, chair)
- Significant impact on Long Range planning process
 - Due to uncertain HST ephemeris beyond ~10 weeks
 - Creates manual work and rescheduling of other science
Science Changes: increasing demand for Transient followup

- Exciting area of science with upcoming major new sources of targets
 - LIGO, ZTF, LSST, etc.
 - Early indications are that science value (esp UV) increase strongly as a function of how quickly HST can respond (LIGO committee)

- HST currently limits numbers of disruptive Target of Opportunity (ToO) observations (1 Ultra-rapid; ~10 rapid) per year

- Disruptive ToO’s impact observatory efficiency
 - Less than optimum schedule (fewer orbits per year)
 - Significant amount of manual processing impacts scheduling of other science and other operational activities

- Do we need to revisit decision mechanisms
 - DD vs TAC ToO programs
 - Bright Object Protection checking
 - Impact on other scheduled science (either A or B gets observed with last minute decision)

- Mechanisms for working with external communities (LIGO, LSST, etc.)
Science Changes: New types of Large Programs

- ULLYSES impacts lifetime of COS FUV Detector
- Potential for other large UV programs
- Support for UV in the JWST era
 - Save capability for future balanced against risk of losing it

- Will there be other large programs?
 - What types of impacts on HST or ground system?
Science Changes: Working with JWST

• JWST may well increase demand for HST observations

• How do these two observatories work together?
Science Changes: Future of Archives

- Legacy for HST
 - Capturing the knowledge together with the data
 - Assuring long term value

- How is the nature of archives evolving
 - AWS
 - Software tools and development approaches

- Interaction of other datasets and archives
 - E.g. GAIA astrometry into HST headers
Observatory Changes: Pointing Control System

• Expected to be most vulnerable technical aspect of HST
• Reduced GYRO mode reduces science return ~25%
 • 10% fewer orbits
 • Less schedule flexibility; reduced field of regard
• Hybrid modes to overcome various failures
 • Cost both time and key resources to develop
• Possible changes in proposal selection process to improve efficiency in RGM
 • Avoid too large a fraction of targets in one part of the sky
 • Interactions with ToO (and time critical?) observations
• Trade decisions
 • E.g. jitter vs GYRO lifetime (we accepted higher jitter to prolong use of G2)
• Single FGS guiding options (preserve lifetime versus some degraded science)
Observatory Changes: Science Instruments

- ACS and STIS are single string
- COS and WFC3 fully redundant
 - Side switch plans in place
- Issues in mitigating decline in performance
 - CTE, COS/FUV
 - Science and observation planning; calibration work
- Failures impact some areas of science disproportionally
 - Considerable overall redundancy but changes require work by GO’s and STScI
- Current hedge is science of LRP “tail”
 - Past experience with transitioning proposals when possible
- Future concern:
 - Balance between support for working SI’s and closeout/AR support
Observatory Changes: Other possible issues

- Data volume constraints (recorders or transmitters)
 - Pure parallel observations
 - Value of coordinated parallels; review process
- Power system (e.g. solar array motions)
 - Limited field of regard and scheduling constraints
- Unknown/unpredictable issues
 - Motivates maintaining knowledge and skills of team
Budget Changes: Limitation of Resources

• Flat budget scenario implies ~20% fewer staff in 2025

• What are the “core” capabilities that MUST be preserved?
Conclusions

• The challenge:
 – Balancing resources, observatory decline, and science opportunities

• What else should be considered in these areas?

• RISK: a decision made under uncertainty or incomplete information