Cycle 31 TAC Results and Cycle 32 Preparations

TAC Process in Cycle 31 (1)

- Hybrid process: proposals were split between external panels and virtual panels meeting by video-conference.
- External panelists provided the assessment and grading of a subset of Small GO proposals ($1-15$ orbits) including Snapshot and Archival proposals (except for two panels with only AR in order to balance proposal load).
- Virtual panels reviewed the remaining Small GO, Medium, Archival Legacy, Large and Treasury proposals. Virtual panelists interacted by video-conference.
- Exception - all Solar System proposals were reviewed by the virtual panel (due to the small proposal pool)

TAC Process in Cycle 31 (2)

Proposals reviewed by virtual group panels:

- There were eight panels, with $11-16$ members, including Chair and Vice-Chair (no Vice-Chair in Solar System).
- Each panel was allocated an allocation for Medium proposals based on orbit pressure, as well as an orbit allocation for Small proposals based on orbit pressure.
- The panel Chairs and Vice-Chairs, together with the TAC Chair and three At-Large members, constituted the Executive Committee that reviewed Large/Treasury/Legacy proposals.
- The Executive Committee met in-person the week following the virtual panel meeting.

Cycle 31 TAC Summary Results

Category	Requested	Approved	Percentage Approved	ESA Approved	ESA Approved Percentage
GO Proposals	785	122	15.5%	20	16.4%
Snapshots	42	7	16.7%	2	28.6%
Archival	74	21	28.4%	0	0.0%
AR Legacy	13	4	30.8%	0	0.0%
Theory	39	5	12.8%	0	0.0%
Total	$\mathbf{9 5 3}$	$\mathbf{1 5 9}$	$\mathbf{1 6 . 7 \%}$	$\mathbf{2 2}$	$\mathbf{1 7 . 1 \%}$
Primary Orbits	$\mathbf{1 8 , 4 3 8}$	$\mathbf{2 , 6 1 4}$	$\mathbf{1 4 . 2 \%}$	$\mathbf{4 5 3}$	$\mathbf{1 7 . 3 \%}$

Oversubscription by Cycle

Acceptance Fraction by Size

ESA Acceptance Fraction

Proposal Institutional Acceptance Fraction

Only shows Institutions that have $>=3$ Proposals approved

Science Category Distribution by Orbits

Science Category Distribution by Proposals

Gender Success Rate by Proposals

Gender Success Rate by Proposals

Percentage of new PI's

Cycle 32 Preparations

- Cycle 32 will start on $\mathbf{1 0 / 1 / 2 4}$ and end on $\mathbf{9 / 3 0 / 2 5}$
- The Cycle 32 HST TAC will have the same hybrid structure as the Cycle 31 TAC, with external panelists reviewing Small (<16 orbits), SNAP and AR proposals.
- Exception: all Small and SNAP proposals in CGM/IGM and LSS will be in the virtual panel.
- There will be no external panels for Solar System and (proposed) Transients.
- All other proposals will be exclusively reviewed by virtual panels.
- The Executive Committee will meet in-person.
- The reviews will again be dual-anonymous.
- All five instruments will be offered (if operational): ACS, COS, FGS, STIS, WFC3.
- The same proposal categories as in C31 will be offered.

C31 TAC Results and C32
Preparations

Cycle 32 Panels
 (Small and Medium Proposals)

- Solar System Panel (major and minor planets and other bodies)
- Planets and Planet Formation Panel (Extra-solar Planets, Debris Disks)
- Stellar Physics Panel (Cool Stars, Hot Stars, Compact Stellar Objects, Resolved Star Formation, Circumstellar Matter)
- (Proposed) Transients Panel (Galactic or Extragalactic highenergy transient phenomena)
- Stellar Populations Panel (Resolved Stellar Populations, ISM)
- Galaxies Panel (Unresolved Stellar Populations and Galaxy Structure, ISM in External Galaxies, Unresolved Star Formation)
- CGM \& IGM Panel (CGM, IGM, QSO absorption lines)
- Massive Black Holes and their Hosts Panel (AGN/Quasars)
- Large-Scale Structure of the Universe Panel (Cosmology, Galaxy Clusters, Lensing, Distance Scale)

Cycle 32 Plans (cont.)

- The TAC Chair is Margaret Hanson (Univ. of Cincinnati)
- The selection of the Panel Chairs and Vice-Chairs, and the panelists is underway.
- Each virtual panel will have 11-15 Panelists and a Chair and Vice-Chair. Solar System and (proposed) Transients will not have a Vice-Chair. The panels will meet virtually.
- The Panel Chairs and Vice-Chairs and three At-Large members will form the Executive Committee.
- The Executive Committee will meet in-person.

Available Orbits in Cycle 32

- Up to $\mathbf{3 2 0 0}$ orbits available for Cycle 32 GOs. The Cycle 31 allocation was 2300.
- Provisional break-down:
- $\mathbf{8 0 0}$ orbits for the EC (Large and Treasury)
- $\mathbf{1 6 0 0}$ orbits for the 9 Panels (Small GO with <35 orbits)
- $\mathbf{8 0 0}$ orbits will be allocated for Medium proposals ($35-74$ orbits)
- An additional 1000 Snapshot observations and 500 Pure-Parallel observations may be allocated.
- Up to $\mathbf{1 5 0 0}$ orbits available for Multi-Cycle Treasury programs
- Distribution may be adjusted based on proposal pressure.

Tentative Cycle 32 Proposal Review Schedule

- 12/13/23: Call for Proposals release
- 03/26/24: Phase I Proposal deadline
- 04/12/24: Proposals made available to panels
- 05/10/24: Grades and reviews due from panelists
- 05/17/24: Triage results available to panels
- 05/28/24-06/05/24: Panels and EC meet
- Mid-June: Notifications sent out
- 07/17/24: Phase 2 proposal deadline
- 08/01/24: Budget submission deadline

C31 TAC Results and C32

Backup: Details on the C31 Results

Programs recommended by the Executive Committee

ID	Resources	Science Category	Title
04330	AR	Stellar Physics and Stellar Types	Unlocking the Stellar Treasure Trove: A Legacy Library of Stellar Hosts' Heterogeneities, Activity, and Spectral Contributions from HST Exoplanet Data
04205	122	Solar System Astronomy	HST-Juno Io Campaign: Connecting Volcanos to the Plasma Environment
04028	250 Targets	Supermassive Black Holes and Active Galaxies	A Snapshot Survey of Sub-arcsec Dual Quasars and Lenses at z>2
04594	110	Stellar Physics and Stellar Types	A Legacy Far-Ultraviolet Spectral Atlas of Extremely Metal-Poor O Stars
04536	AR	Galaxies	Galactic Winds Unveiled: Leveraging Cloud Simulations with Radiative Transfer to Constrain Feedback
04580	AR	Galaxies	ArchExtract: Maximizing Hubble's Archival Legacy of Slitless Spectroscopy
04098	AR	Intergalactic Medium and the Circumgalactic Medium	The Local Gaseous Cosmic Web
04327	169	Galaxies	Resolving gas, star formation and feedback in nearby galaxies with an HST+JWST+ALMA Treasury
04101	61	Stellar Populations and the Interstellar Medium	The Hubble Missing Globular Clusters Survey
04625	88	Stellar Physics and Stellar Types	From High-Energy Particle Beam Heating in Stars to Ozone Destruction in Planets: NUV Spectra as the Fulcrum for a Comprehensive Understanding of Flaring M Dwarf Systems
04393	131	Intergalactic Medium and the Circumgalactic Medium	CONTACT: Circumgalactic Observations of Nuv-shifted Transitions Across Cosmic Time

Medium Programs recommended by the Panels

ID	Resources	Science Category	Title
04412	47	Exoplanets and Exoplanet Formation	Hot Rock Stars: Capturing high-energy spectra of 5 M dwarfs hosting terrestrial exoplanets that JWST will test for atmospheres
04456	48	Exoplanets and Exoplanet Formation	Bridging the Gap Between Exo-Kuiper Belts and the Solar System's Zodiacal Light in Support of Future NASA Exoplanet Missions
04126	44	Galaxies	Dust in Galactic Winds and Fountains: A Near-UV Survey of Nearby Highly Inclined Starburst and Active Disk Galaxies
04505	40	Galaxies	Ultradiffuse Galaxies in the Virgo Cluster
04510	42	Galaxies	Proper Motions of Galaxies in the M81 Group: Unleashing the Full Power of HST's 20-year Time Baseline
04850	74	Galaxies	Mega-deep UV spectroscopy of star-forming galaxies: completing the picture of the extremely metal-poor massive stars underlying high-ionization UV nebular emission
04464	$20+20$	Large Scale Structure of the Universe	The Origin of the Virgo Intergalactic Population
04645	45	Large Scale Structure of the Universe	Pioneering Precision: Advancing Cosmology with the First Statistical Sample of Gravitationally Lensed Supernovae
04042	38	Stellar Physics and Stellar Types	Hot and cool - hot companions as probes of red supergiants
04694	$30+12$	Stellar Physics and Stellar Types	Gamma-ray burst supernovae across cosmic time
04222	36	Stellar Populations and the Interstellar Medium	Expansion and Evolution of the Crab Nebula: A 23+ Year HST Perspective Active Galaxies
03988	50	Supermassive Black Holes and	A Fundamental Test of Black Hole Masses: Ultraviolet Echo Mapping the Multi-Scale Broad Line Gas around Quasars

Instrument Summary

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline & & & & & & \\ \text { Configuration } & \text { Mode } & \text { Prime \% } & \begin{array}{c}\text { Coordinated } \\ \text { Prime + } \\ \text { Parallel \% }\end{array} & \text { Total } & \begin{array}{c}\text { Instrument } \\ \text { Prime Usage }\end{array} & \begin{array}{c}\text { Carallel Usage } \\ \text { Parated }\end{array} & \begin{array}{c}\text { Pure Parallel } \\ \text { Usage }\end{array} & \text { Snap Usage }\end{array}\right\}$

Gender Submission Statistics

Gender Success Rate by Orbits

Preparations

Triage Gender Distribution

Gender Success by Science Category

UV Initiative

Target was 40% for panels and 50% for EC Overall 35\% for UV Proposals and 47\% for orbits recommended
$\Rightarrow 78 \%$ of EC are UV Orbits
\supset (total orbit request not all UV)
$\Rightarrow 1229$ of 2614 orbits recommended
$\Rightarrow 10$ of 30 ARs; 46 of 122 GOs recommended

Target of Opportunity Proposals

$\left.\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { ID } & \text { Orbits } & \begin{array}{c}\text { Disruptive } \\ \text { Activations }\end{array} & \text { Non-Disruptive Activations } & \begin{array}{c}\text { Flex Day } \\ \text { Activations }\end{array} & \begin{array}{c}\text { Total } \\ \text { Activations }\end{array} & \begin{array}{c}\text { Multi- } \\ \text { Cycle }\end{array} & \text { Type of ToO } & \text { Notes } \\ \hline 03943 & 4 & 1 & & & 1 & & \begin{array}{c}\text { Next Interstellar } \\ \text { Object }\end{array} & \text { within 1 week }\end{array} \right\rvert\, \begin{array}{c}\text { Next Cometary } \\ \text { Disintegration }\end{array}\right]$

Joint JWST Proposals

29 GO Proposals were submitted for 721 HST orbits and 219 hours of JWST time.
$\Rightarrow 7$ recommended for 232 HST Orbits and 45.5 hours of JWST time

ID	Orbits	Hours	
04039	6	5.08	A multiwavelength study of protoplanetary disk ionization
04205	122	4.8	HST-Juno Io Campaign: Connecting Volcanos to the Plasma Environment
04293	6	5.43	Elucidating Jupiter's auroral processes with HST and JWST
04591	15	12	Winging the SMC: 3D Structure of the Interstellar Medium in the Tidally Distrupted Wing of the SMC
04645	45	8.1	Pioneering Precision: Advancing Cosmology with the First Statistical Sample of Gravitationally Lensed Supernovae
04694	30	6.8	Gamma-ray burst supernovae across cosmic time
04697	8	3.27	Moving beyond the Milky Way: Enabling Cross-Observatory Proper Motion Determinations with HST and JWST

Joint Chandra Proposals

9 GO Proposals were submitted for 111 HST Orbits and 648 ksecs of Chandra time.

$\Rightarrow 1$ recommended for 17 HST Orbits and 104 ksecs of
Chandra time

ID	Orbits	Ksecs	
3906	17	104	Activity at the Edge

Joint XMM-Newton Proposals

$\diamond 10$ GO Proposals were submitted for 172 HST orbits and 701 ksecs of XMM-Newton time

$\Rightarrow 2$ recommended for 57 HST Orbits and 105 ksecs of XMM-Newton time

ID	Orbits	ksecs	
04268	10	60	Toint HST+XMM time-resolved UV+X-ray observations of a quasi-periodically erupting X-ray source
04412	47	45	Hot Rock Stars: Capturing high-energy spectra of 5 M dwarfs hosting terrestrial exoplanets that JWST will test for atmospheres

Joint NOIRLab Proposals

14 GO Proposals were submitted for 305 HST orbits and 26.32 NOIRLab nights
 $\Rightarrow 1$ recommended

ID	Orbits	Nights	Title
04694	30	2	Gamma-ray burst supernovae across cosmic time

Joint NRAO Proposals

8 GO Proposals were submitted for 166 HST orbits and 158 NRAO Hours

$\Rightarrow 1$ recommended for 8 HST orbits and 4 NRAO hours

ID	Orbits	Hours	
Title			
04627	8	4	Betelgeuse: The Great Dimming Redux?

TESS Exoplanet Initiative

1 GO Proposal was submitted for $90+22$ HST orbits
$\Rightarrow 0$ recommended

Cloud Computing

3 proposals were submitted

$\Rightarrow 1$ recommended

ID	
Title	
04403	Galaxy Parallax Preparatory Science

Fundamental Physics

18 proposals were submitted: 3 AR and 15 GO for 479 orbits

$\Rightarrow 1$ GO recommended for 31 orbits

ID	Type	Resources	Title
04603	GO	31	Extending Precision Cosmology to Early Hosts of Type Ia Supernovae via Surface Brightness Fluctuation (SBF) Distances

Pure Parallel Proposals

2 GO Proposals were submitted for 430 HST orbits $\Rightarrow 0$ recommended

ULLYSES Proposals

1 AR and 7 GO Proposals were submitted for 223

 HST orbits$\Rightarrow 1$ recommended for 110 orbits

ID	Resources	Title
04594	110	A Legacy Far-Ultraviolet Spectral Atlas of Extremely Metal-Poor O Stars

