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ABSTRACT 
Using data from Cycles 17, 18, and 19, we have updated the IR channel bad pixel table 
for WFC3.  The bad pixel table contains flags that mark the position of pixels that are 
dead, unstable, have a bad zeroth read value, or are affected by “blobs”. In all, 28,500 of 
the science pixels (2.77%) are flagged as bad. Observers are encouraged to dither their 
observations as a means of lessening the effects of these bad pixels.  The new bad pixel 
table is in the calibration database system (CDBS) as w681807ii_bpx.fits. 

 
 

Introduction 
We report here on an updated bad pixel table for the IR channel detector.  As 

expected, extended exposure to the harsh environment of low Earth orbit has led to 
changes over time in the behavior of some of the pixels in the detector.  The bad pixel 
table, which is a reference file in the Calibration Database System (CDBS) and contains a 
list of the pixels on the detector which are considered permanently bad, is applied by the 
calwf3 calibration pipeline to IR channel data.  By using calwf3 with the most up-to-date 
bad pixel table, observers should be able to avoid using bad pixels in their analyses 
through the use of the data quality (DQ) arrays of the ima and flt versions of their 
observations.   
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Data 
This update was performed using calibration data collected during observing cycles 

17, 18, and 19.  A full list of the data files used is included in Appendix 1.  Two types of 
observations were used for this bad pixel search: 56 internal flat field files and 117 dark 
current files.  The flat field observations were all made through the F140W filter.  All but 
three were taken with the RAPID sample sequence and had an exposure time of 38.1 
seconds each.  The other three were taken with the SPARS10 sample sequence and had 
an exposure time of 32.9 seconds each.  The dark current files were all collected using the 
SPARS100 and SPARS200 sample sequences, which have exposure times of 1,403 and 
2,803 seconds, respectively.  These files represented the set of data which were found, 
through a manual search, not to have persistence sources.  Other files, which were found 
to contain persistence, were not used in order to avoid having the persistence be 
interpreted by our scripts as instability in the signal. 

All files were run through the calwf3 data reduction pipeline prior to searching for 
bad pixels.  In order to obtain a set of consistently calibrated flt files, we ran calwf3 with 
the following data reduction steps turned on: DQICORR, ZSIGCORR, ZOFFCORR, 
BLEVCORR, UNITCORR and CRCORR.  The DARKCORR step was also turned on 
for the processing of the internal flat field observations. 

In order to be sure that effects from cosmic ray hits did not cause erroneous 
identification of bad pixels, our plan was to ignore all pixels flagged as impacted by 
cosmic rays in a given ramp.  We also wanted to be sure that calwf3’s cosmic ray search 
was as effective as possible at identifying cosmic rays.  Therefore, we used a modified 
version of the cosmic ray rejection table (CRREJTAB header keyword), where we 
changed the threshold used by calwf3 in the cosmic ray search.  By default, when looking 
at a pixel’s signal values up the ramp, calwf3 uses a 4σ threshold (where σ is calculated 
from the noise properties of the pixel’s signals) to identify cosmic rays.  After 
experimenting with various values of the threshold, we decided to use a value of 2.5σ.  
With this more aggressive value, calwf3 was better able to identify and flag small-
magnitude (i.e. tens of counts) cosmic ray hits in the data while still keeping to a 
minimum the number of falsely identified cosmic rays.  With the large data set being 
used, we deicded it was better to be aggressive and throw out a few false cosmic rays 
than to include unflagged small-magnitude cosmic rays in the analysis and potentially 
misinterpret them as unstable or bad pixels. 

In addition, we used a soon-to-be released version of calwf3 which has the added 
ability to identify and correct negative cosmic ray hits.  (An example of a negative 
cosmic ray hit during a ramp is shown in Figure 1 of Hilbert and Bushouse, 2010.)  This 
new ability prevented pixels which were impacted by negative cosmic ray hits from 
having anomalously low signal rates in the final output flt file due to the large jump 
downward in measured signal attributed to the cosmic ray.  A large enough negative 
jump and subsequent low signal rate could potentially cause a pixel to be erroneously 
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flagged as an unstable pixel.  With calwf3’s added ability to identify and fix these 
negative jumps, we believe that the resulting map of unstable pixels is more accurate than 
the previous version. 

Changes to the default behavior of calwf3 since the previous bad pixel table update 
meant that no pixels in the calibrated flt images had a value of zero due to bad pixel flags.  
Previously, many of the pixels which were flagged in the data quality array were 
automatically given a value of zero in the flt file.  In the previous bad table update, these 
pixels were given non-zero values by manually line-fitting their measured signals up the 
ramp.  For this bad pixel table update we did not have to perform any manual line fitting.  
This implies a more consistent set of pixel values were used in this bad pixel table 
update.  

Analysis 
For this update we followed the same procedure used during the last update, outlined 

in Hilbert and Bushouse, 2010.  The four types of bad pixels contained in the table 
include: bad in zeroth read, dead, unstable, and pixels within a blob. 

Bad in Zeroth Read Pixels 
These are pixels which exhibit anomalous signals in the zeroth read of a ramp, 

usually due to being shorted or unbonded (Hilbert, 2003).  To identify these pixels, we 
began with the zeroth reads of the raw (untouched by calwf3) dark current ramps listed in 
Appendix 1. Using the zeroth reads from all of the input ramps, we created a sigma-
clipped mean zeroth read image. We then created a separate histogram of the values in 
this mean zeroth read for each quadrant of the detector.  Since raw ramps have had 
neither the mean bias level nor the zeroth read subtracted from them, and with each 
quadrant of the detector read out through a different amplifier, it was important to treat 
each quadrant separately. A Gaussian was fit to the histogram from each quadrant, and 
pixels falling more than 3σ from the mean value were flagged as bad.  Figure 1 shows an 
example of a histogram and Gaussian fit. 

We also repeated this process on each input ramp individually, in order to catch any 
pixels which may have been occasionally beyond the 3σ threshold.  With this two-step 
method, we identified 4,923 pixels (0.479% of the detector’s light-sensitive pixels) which 
are bad in the zeroth read. This is a net decrease of 67 pixels over the population in the 
current bad pixel table.  However, there were not 67 pixels that simply moved within the 
3σ limits of the histogram.  Rather, there were 294 pixels which were previously flagged 
as bad that moved within the 3σ limits and are now considered good.  These were mostly 
offset by 227 pixels which were previously good but now fall outside the 3σ limits.  With 
an order of magnitude more dark current files going into the creation of the mean zeroth 
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read compared to the previous bad pixel table update, we attribute these small changes in 
the number and locations of bad pixels to better statistics. 

Figure 2 shows a map of the updated bad zeroth read pixels, which are flagged with a 
value of 8 in the bad pixel table.  

 

 
Figure 1:  Histogram of pixel signals in quadrant 1 of the mean zeroth read image constructed from 

the raw dark current files. 
 

 
Figure 2:  Updated map of pixels that are bad in the zeroth read. 
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Dead Pixels 
The next population of bad pixels to be updated was the dead pixels.  These pixels 

display an abnormally low quantum efficiency (QE) and therefore measure very little or 
no signal when illuminated.  As such, we used calwf3-processed flt images of the internal 
flat field observations listed in Appendix 1 for this search.  Unlike in the previous search 
for dead pixels (Hilbert and Bushouse, 2010) we decided that the large amount of data 
acquired in recent observing cycles allowed us to use flat field observations taken 
through a single filter, F140W.  During the previous update, flat fields from multiple 
filters were combined into a mean flat field.  For the current update, we simply combined 
the 56 individual F140W flat field images into a mean flat field image.  This was done by 
calculating the sigma-clipped mean signal on a pixel-by-pixel basis.  As in the previous 
update, two different searches were made to find dead pixels.  The first, which was for 
any pixels in the mean flat field with zero or negative signal, netted 2,399 pixels (0.23% 
of the science pixels).  For the second search we stepped pixel-by-pixel across the mean 
flat field image.  For each pixel, we calculated the sigma-clipped mean signal in a 50x50 
pixel box centered on the pixel.   If the pixel had a signal that was less than 30% of the 
mean signal level of the surrounding box, it was flagged as dead.  In this way, we were 
able to identify pixels with abnormally low QE-values, while not erroneously flagging 
pixels located on areas of the detector which received only vignetted illumination.  This 
search identified 1,397 dead pixels.  Finally, as was done previously, the pixels within the 
“death star” were manually added to the list of dead pixels.  In all, this update resulted in 
the identification of 3,358 dead pixels (0.327%).  This is 552 fewer than the 3,910 found 
by Hilbert and Bushouse (2010).  Similar to the case for the bad zeroth read pixels, this 
net difference of 552 pixels comes from 80 pixels which were previously not flagged as 
dead but were found to be in this search, and 632 which were previously marked as dead 
but not identified as dead in this search.  These variations can be attributed to pixels with 
signal rates very close to the 30% cutoff threshold mentioned previously slipping above 
or below the threshold in the expanded set of data used in this search.  Figure 3 shows a 
map of the dead pixels found in the current search.  These pixels are flagged with a value 
of 4 in the final bad pixel table. 
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Figure 3:  Updated dead pixel mask.  The majority of the dead pixels are confined to the death star 

and the corners and edges of the detector.  
 
 

Unstable Pixels 
Once again, the flavor of pixel which makes up the majority of the bad pixel table is 

the unstable pixel.  These pixels, flagged with a value of 32, exhibit non-repeatable 
behavior across nominally identical observations.  This behavior manifests itself in many 
different ways, making “unstable pixels” a broad definition.  Given a set of 100 
nominally-identical flat field ramps, some unstable pixels will behave repeatably for 99 
ramps, but display a nicely linear ramp with a fraction of the nominal signal rate in the 
100th ramp.  Others will jump back and forth between two well-behaved states, but with 
signal rates that are very different.  Still others will never exhibit the same signal rate 
twice, or show a variability in their linearity response or saturation level from ramp to 
ramp.  See the gallery in Appendix 2 of Hilbert and Bushouse (2010) for examples.   

We used an identical method with identical thresholds for the current unstable pixel 
search as were used in the previous update.  Two separate searches were each performed 
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on the set of flat field ramps, and then on the set of dark current ramps, as previous 
analysis showed that some unstable pixels were only unstable in one type of observation.   

Method 1: Temporal Search 
The goal of the first search was to find pixels which displayed only a small number of 

deviant ramps amongst a large number of nominally identical observations.  For this we 
used a series of flt images and compared a pixel’s value in a sigma-clipped mean flat field 
(or dark current) image to its values in the individual flat fields (or dark current files) 
used to create the mean.   Since we are examining each pixel’s signal values through 
time, we refer to this as the “temporal search” for unstable pixels. If the value in any of 
the individual flts was more than 5σ from that in the mean flt, then the pixel was flagged 
as unstable.  Using the flat field images listed in Appendix 1, this method found 1,493 
unstable pixels (compared to 2,223 in the previous bad pixel table).  Repeating the 
process on the dark current images yielded 12,667 flagged pixels (compared to 6,001 
previously).  Combining the two, 13,254 pixels were flagged as unstable in the temporal 
search.  Figure 4 shows maps of these unstable pixels found in both the flat field and dark 
current data. 

As can be seen in Table 1, this is a large increase in the number of dark current file-
identified unstable pixels, while using an identical search method and threshold value 
used in the previous bad pixel table update.  The mean dark current image for this search 
was made with 117 files, compared to only 13 files in the previous bad pixel table update.  
This implies a significantly higher signal-to-noise mean dark current image, allowing 
unstable pixels to be more easily identified.  Also, with 117 images taken over 637 days, 
this dataset provided a much longer timescale and sample size within which unstable 
pixels could reveal themselves, compared to the 13 images over 33 days used in the 
previous search. 

We believe that false positives are not a significant contributor to the unstable 
population identified in this search.  For comparison, in an ideal detector where each 
pixel’s signal rates follow a Gaussian distribution centered about a mean value, we would 
expect to see a value outside of the 5σ threshold only 0.00006% of the time.  For an input 
data set of 117 dark current images, each with 1014 x 1014 pixels, this implies that in an 
ideal detector, we would expect to see only 72 pixels outside the 5σ range from the 
Gaussian variability in signal rate.  This is roughly 0.5% of the 12,667 found in this 
search. 

We also took steps to be sure that persistent signal from observations made prior to 
each of the dark current ramps was not causing pixels to be accidently identified as 
unstable.  As we stepped through the dark current input images and compared each to the 
mean dark current image, we created a map of the locations of pixels identified as 
unstable in that particular input image.  By examining each map, we were able to confirm 
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that the unstable pixels identified did not fall into point source-like patterns, suggesting 
that the pixels were truly unstable.  
 
 

 Flat Field Images Dark Current Images Combined 
Updated Search 1,493 12,667 13,254 

Previous Bad Pixel Table 2,223 6,001 7,504 
Table 1:  Number of unstable pixels found using the temporal search on the flat field and dark current 

data, compared to the number found in the previous bad pixel table update. 
 
 

  
Figure 4:  Maps of unstable pixels found using the temporal search on flat field images (left), and dark current images (right). 

Method 2: Spatial Search 
The second type of unstable pixel search was designed to catch pixels which are 

wildly unstable and variable from ramp-to-ramp.  These pixels have a very large spread 
of signal rates across the input data, meaning that a simple sigma threshold, such as that 
used in the temporal search above, would not necessarily catch these pixels.  Therefore, 
we used a spatial comparison of pixels across the detector for this search.  We first 
calculated the sigma-clipped standard deviation of each pixel’s values through the set of 
input images.  This created a map of standard deviations across the detector.  Histograms 
of these maps for the mean flat field and dark current images are shown in Figures 5 and 
6.  We then calculated the sigma-clipped mean and standard deviation of the standard 
deviation map, as a way of defining the “mean” behavior across the detector.  Finally, 
any pixel which had a value in the standard deviation map that was more than 7σ away 
from the mean of the standard deviation map was flagged as unstable.  Another way to 
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explain this filter is to say that a pixel caught by this seach method is considered unstable 
due to the fact that its measured signal rates vary from ramp-to-ramp much more than the 
average pixel’s signal rates do.  As with the temporal search above, this search was 
performed first on the set of flat field flt files, and then separately on the set of dark 
current flt files.  A more detailed explanation of both the temporal and spatial searches for 
unstable pixels are given in Hilbert and Bushouse (2010).  Figure 7 shows maps of the 
unstable pixels from the flat field and dark current data identified using this method.  

 

 
Figure 5: Histogram of the noise/signal ratio image created from the mean flat field and used in the 

spatial unstable pixel search.   

 
Figure 6: Histogram of the noise/signal ratio image created from the mean dark current image and 

used in the spatial unstable pixel search. 
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Table 2 shows the results of this search on the flat field and dark current data.  As 
expected, with a similar number of individual flat field images used in this search 
compared to the previous bad pixel table update (56 files, compared to 54 previously), we 
identified a similar number of unstable pixels in the mean flat field.  And with an order of 
magnitude more dark current images going into the present serach compared to the 
previous update, the increased signal-to-noise in the mean dark current image meant that 
fewer pixels fell outside the 7σ threshold in the current search. 

 
 

 Flat Field Images Dark Current Images Combined 
Updated Search 3,908 1,332 5,041 

Previous Bad Pixel Table 3,795 3,318 6,633 
Table 2:  Number of unstable pixels found using the spatial search on the flat field and dark current 

data, compared to the number found in the previous bad pixel table update. 
 
 

  
Figure 7:  Map of unstable pixels netted by search method 2 on the flat field (left) and dark current 

(right) images.  
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Total 
Combining the results of the two searches on the flat fields and dark current images, 

we arrive at the updated unstable pixel map, shown in Figure 8.  This map has a total of 
16,500 pixels flagged as unstable, compared to 10,885 in the previous bad pixel table.   

As mentioned previously this number has increased primarily due to the much larger 
data set of dark current files used for this search, yielding more unstable pixels in the 
temporal search. 

 
 

 
Figure 8:  Map of all unstable pixels identified as part of this bad pixel search. 
 

IR “Blobs”  
This update to the bad pixel table also afforded the opportunity to update the list of 

currently known “blobs”.  These blobs are thought to be the result of particulates resting 
on the Channel Select Mechanism (CSM), resulting in out-of-focus blobs with decreased 
throughput at the detector.  Details are given in Pirzkal et. al, 2010.  Pirzkal’s ongoing 
monitoring program identifies new blobs as they appear in IR images.  Pixels affected by 
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these blobs are then marked in the bad pixel table with the value 512.  This value is 
typically used for pixels which are found to be “bad in flat”.   

As a part of this update, the number of pixels flagged as affected by blobs has risen 
from 4,534 to 7,162, due to an increase in the number of blobs from 19 to 40.  Figure 9 
shows a map of the updated blob positions and diameters.  Newly identified blobs (since 
the previous bad pixel table update) are shown in red. 

 

 
Figure 9:  New blob mask created for this bad pixel table update.  White blobs were present in the 

previous version of the bad pixel table.  Red blobs have been newly added. 

Conclusions 
Using bit-wise addition, the maps of the four types of bad pixels are combined into a 

final bad pixel map, shown in Figure 10 below.  This map has a total of 28,500 pixels 
(2.77% of the light-sensitive pixels) flagged as bad.  Added to this list of bad pixels are 
the outermost row and column of the reference pixels, which are flagged with a value of 
128 in the bad pixel table, indicating “bad reference pixels”.  Note that with the reference 
pixels stripped away, these flags are not present in the flt files output from calwf3.  This 
final set of bad pixels is placed in a fits table for use by calwf3, where the flags are 
propagated into the data quality arrays of individual observations.  Table 3 summarizes 
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the results of this analysis, listing the various flavors of bad pixels, the flag value 
associated with each, as well as the size of the population. 

The current default behavior for calfw3 is to process bad pixels in exactly the same 
way that good pixels are processed.  Previous versions of calwf3 forced bad pixels to 
have a value of zero in the output flt file, effectively forcing bad pixels to be unusable.  
This behavior has been changed, so that users must now decide which types of bad pixels 
they wish to ignore and which they wish to use.  This can be done by reading in and 
examining the data quality array (in the third extension) of the output flt files, and 
ignoring pixels with the desired bad pixel flags. 

With bad pixels spread widely across all areas of the detector, observers are 
encouraged to dither their observations, which will allow the effects of these bad pixels to 
be minimized. 

 

 
Figure 10:  Map of the location of all bad pixels found in this bad pixel table update.  28,500 pixels 

(2.77%) have been flagged. 
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Bad Pixel Type 
Flag Value in Bad Pixel 

Table 
Number of Pixels 

Percentage of Light-
Sensitive Pixels 

Good Pixels 0 999696 97.23% 
Dead 4 3358 0.33% 

Bad in 0th Read 8 4923 0.48% 

Unstable 32 16500 1.60% 

Bad Reference Pixels 128 4092 NA 
Blobs (Bad in Flat) 512 7162 0.70% 

Table 3:  Results from this bad pixel search.  97.23% of the light-sensitive pixels are unflagged and 
considered good. 

Recommendations 
WFC3/IR users are encouraged to dither their observations in order to minimize the 

impact of bad pixels.  Also, during data analysis, careful attention should be paid to the 
data quality arrays in the data, so that inappropriate pixels are not used in analysis. 
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Appendix 
List of ramps used in this analysis. 
 
Proposal 

ID 
Sample 

Sequence 
Exposure 
Time (sec) Filenames 

Dark Current Observations 

11929 
 

SPARS200 2803 ibcu5ydaq_raw.fits, ibcu6lq3q_raw.fits, ibcu6ydsq_raw.fits 
ibcu8ldzq_raw.fits, ibcub1tyq_raw.fits, ibcubecnq_raw.fits 

SPARS100 1403 

ibcu6gc5q_raw.fits, ibcu6nd7q_raw.fits, ibcu6oz7q_raw.fits 
ibcu7ad0q_raw.fits, ibcu7byqq_raw.fits, ibcu7neuq_raw.fits 
ibcu7owmq_raw.fits, ibcu7tavq_raw.fits, ibcu8ne7q_raw.fits 
ibcu9bvkq_raw.fits, ibcua6a6q_raw.fits, ibcuadcyq_raw.fits 
ibcuaeyqq_raw.fits, ibcuajdfq_raw.fits, ibcuaqgfq_raw.fits 

ibcub9axq_raw.fits 
 

12349 

SPARS200 2803 

iblt15c6q_raw.fits, iblt1bdcq_raw.fits, iblt2hfxq_raw.fits 
iblt2xfqq_raw.fits, iblt31bkq_raw.fits, iblt3nbyq_raw.fits 
iblt4tetq_raw.fits, iblt5jf5q_raw.fits, iblt79bgq_raw.fits 
iblt8ldzq_raw.fits, iblt95btq_raw.fits, iblt9bf9q_raw.fits 

iblt9rbkq_raw.fits 
 

SPARS100 1403 

iblt0akrq_raw.fits, iblt0idmq_raw.fits, iblt0pd1q_raw.fits 
iblt0qcrq_raw.fits, iblt19clq_raw.fits, iblt1fdeq_raw.fits 

iblt1gczq_raw.fits, iblt1ngqq_raw.fits, iblt1og5q_raw.fits 
iblt1wsgq_raw.fits, iblt20cqq_raw.fits, iblt27crq_raw.fits 
iblt28f8q_raw.fits, iblt2dg8q_raw.fits, iblt2ehlq_raw.fits 

iblt2ldeq_raw.fits, iblt2mcqq_raw.fits, iblt35mbq_raw.fits 
iblt36jbq_raw.fits, iblt3jcaq_raw.fits, iblt3kclq_raw.fits 
iblt43jfq_raw.fits, iblt44ihq_raw.fits, iblt4hl2q_raw.fits 
iblt4ij4q_raw.fits, iblt4pfjq_raw.fits, iblt51j9q_raw.fits 

iblt59q6q_raw.fits, iblt5nldq_raw.fits, iblt5olnq_raw.fits 
iblt5wb6q_raw.fits, iblt60m1q_raw.fits, iblt67n9q_raw.fits 
iblt68kiq_raw.fits, iblt6dnfq_raw.fits, iblt6enhq_raw.fits 
iblt75dhq_raw.fits, iblt76d9q_raw.fits, iblt7bjtq_raw.fits 
iblt7cjoq_raw.fits, iblt7jj6q_raw.fits, iblt7kj2q_raw.fits 
iblt7rdnq_raw.fits, iblt8hk0q_raw.fits, iblt8iizq_raw.fits 

iblt8pb4q_raw.fits, iblt8qndq_raw.fits, iblt8xhwq_raw.fits 
iblt8yhqq_raw.fits, iblt91cjq_raw.fits, iblt92c8q_raw.fits 
iblt99lpq_raw.fits, iblt9fe0q_raw.fits, iblt9ncdq_raw.fits 
iblt9obyq_raw.fits, iblt9vj5q_raw.fits, iblt9wiyq_raw.fits 
iblta4iyq_raw.fits, ibltabf5q_raw.fits, ibltachsq_raw.fits 

ibltaknmq_raw.fits 

12695 

SPARS200 2803 
ibvi15feq_raw.fits, ibvi16d1q_raw.fits, ibvi25vdq_raw.fits 
ibvi34tmq_raw.fits, ibvi35trq_raw.fits, ibvi53cfq_raw.fits 
ibvi54ciq_raw.fits, ibvi72a3q_raw.fits, ibvi91caq_raw.fits 

ibvi92deq_raw.fits 

SPARS100 1403 
ibvi08exq_raw.fits, ibvi18iiq_raw.fits, ibvi27m9q_raw.fits 
ibvi28m7q_raw.fits, ibvi37z5q_raw.fits, ibvi46f8q_raw.fits 
ibvi47dkq_raw.fits, ibvi66m2q_raw.fits, ibvi75iqq_raw.fits 

ibvi84f4q_raw.fits, ibvi85e0q_raw.fits 
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F140W Internal Flat Field Observations 

11915 RAPID 38.1 
ib9m0anoq_flt.fits, ib9m0erwq_flt.fits, ib9m0fhoq_flt.fits 
ib9m85d3q_flt.fits, ib9m89t9q_flt.fits, ib9m90tgq_flt.fits 

ib9m95arq_flt.fits 

12338 RAPID 38.1 

ibm901gqq_flt.fits, ibm902x6q_flt.fits, ibm903nxq_flt.fits 
ibm904drq_flt.fits, ibm905nnq_flt.fits, ibm906lvq_flt.fits 
ibm907jrq_flt.fits, ibm908nfq_flt.fits, ibm909n9q_flt.fits 
ibm910heq_flt.fits, ibm912v7q_flt.fits, ibm913fzq_flt.fits 
ibm919i1q_flt.fits, ibm920xfq_flt.fits, ibm921leq_flt.fits 

ibm922exq_flt.fits, ibm923nyq_flt.fits, ibm924m6q_flt.fits 
ibm925c5q_flt.fits, ibm926mzq_flt.fits, ibm927mdq_flt.fits 
ibm928gwq_flt.fits, ibm930z6q_flt.fits, ibm931fhq_flt.fits 
ibm937irq_flt.fits, ibm938y5q_flt.fits, ibm939lmq_flt.fits 
ibm940k0q_flt.fits, ibm941nfq_flt.fits, ibm942lnq_flt.fits 
ibm943j2q_flt.fits, ibm944k0q_flt.fits, ibm945mtq_flt.fits 
ibm946h4q_flt.fits, ibm948zuq_flt.fits, ibm949fnq_flt.fits 

12712 
RAPID 38.1 

ibvf01zpq_flt.fits, ibvf02s6q_flt.fits, ibvf03uiq_flt.fits 
ibvf07eeq_flt.fits, ibvf13zxq_flt.fits, ibvf15voq_flt.fits 
ibvf19erq_flt.fits, ibvf25zcq_flt.fits, ibvf26ssq_flt.fits 

ibvf27teq_flt.fits 

SPARS10 32.9 ibvf31cpq_flt.fits, ibvf32g2q_flt.fits, ibvf33gvq_flt.fits 
 


