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1 Abstract 
This is the first of two reports that will help NIRCam users plan how many secondary 
dithers they will need in order to achieve adequate sub-pixel sampling in their images.  
This first report will present a new approach to constructing a composite “stacked” image 
from a series of dithered observations.  Traditionally, this procedure has been done for 
HST images with the Drizzle software package.  While Drizzle accomplishes its 
main objective of rigorously preserving flux, it does not allow users to assess the quality 
of the sampling of the output pixels and the correlations among them.  The new algorithm 
outlined here represents a simple least-squares approach to the problem, and as such it is 
able to rigorously constrain the sampling to be regular and is also able to evaluate 
explicitly the covariances among pixels.   We validate the approach on a portion of the 
UDF.  A subsequent report will make use of the algorithm presented here in order to 
evaluate the quality of reconstructed images in terms of the sharpness of the PSF and the 
number and quality of dithers.  The algorithm presented here may have broad application 
for HST science, as well. 

2 Introduction 
Planning observations with NIRCam will involve several steps.  First, a target will be 
chosen, along with the desired S/N to achieve in each filter.  The ETC (Exposure-Time 
Calculator) will then be used to determine how much total exposure time is required.  
Finally this total time must be divided among some number of exposures.  One obvious 
reason for this is that the maximum exposure time on NIRCam will be 4000 s, but the 
main reason to take multiple exposures is that it allows users to identify and remove 
systematic artifacts from their data. 
Once the number of exposures has been determined, NIRCam users will have to choose 
an appropriate dither pattern to optimize their science.  There are two kinds of dithers:  
primary and secondary.  The primary dithers involve large offsets, and the secondary 
dithers are small offsets executed at each of the primary-dither pointings. This gives a 
total of NP × NS exposures for a particular dither pattern. 
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The user must decide how to divide up the dithers among primary and secondary.  The 
more secondary dithers are taken, the better the sub-pixel sampling will be.  The more 
primary dithers are taken, the more each source will get moved around the detector thus 
mitigating L-flat errors, image defects, and the impact of detector gaps1. Secondary 
dithers will involve steps of a few pixels, so they will mitigate image defects somewhat, 
but they will not accomplish everything that large dithers can.  In general, the small 
secondary dithers will be about 10 pixels (0.32ʺ″) and the large primary dithers will be 
anywhere from 300 pixels (10ʺ″) to 1500 pixels (50ʺ″).  
A general rule of thumb will be to take only as many secondary dithers as are necessary 
to adequately sample the scene, since the more large dithers we take, the better we will 
mitigate all sources of systematic error.  Thus, it will clearly be important to determine 
how many secondary dithers we need to provide adequate sampling.   
This report and its companion will investigate the quality of image reconstruction as a 
function of dither pattern.  We will use realistic model PSFs for several NIRCam filters to 
simulate observations and will combine simulated images taken with various dither 
strategies in order to assess the quality of the sampling.  The actual tests will be done in 
the follow-up report.  The present report gives an overview of image reconstruction 
strategies and develops a tool that can be used to combine images and evaluate the 
output.   
In general, there is no unique way to combine multiple dithered observations of the same 
undersampled scene into a single composite image.  If the images are well-sampled, then 
a simple shift-and-add-type approach can produce a near-optimal stack.  If there is no 
dither, or if there are only whole-pixel dithers, then the same shift-and-add solution 
works as well, even in the presence of undersampling.  However, when the detector is 
undersampled and there are sub-pixel dithers present, it means that there is fundamentally 
different information in the different exposures, and we must be careful how we combine 
them if we want to preserve that information. 
We the report begin by defining the high-level challenge of image reconstruction in terms 
of what information each individual exposure contains about the scene and what we 
might hope to gain by combining them.  To this end, we present the concept of the 
“effective” scene, and how this scene is sampled by the detector pixels in an individual 
exposure.  We then discuss various standard ways of reconstructing this scene.  We find 
that all the available algorithms have drawbacks, so we propose a new method for scene 
reconstruction that has the benefit of being least-squares.  As such, it naturally provides 
valuable information about variances and covariances among pixels in the scene.  We 
spend several pages motivating the new approach and deriving the equations that will 
allow us to go from a set of dithered images of a scene to a single composite 
representation.  Finally, we demonstrate this new tool by reconstructing a galaxy from the 
UDF (Ultra-Deep Field) images taken with HST’s Advanced Camera for Surveys. 
While this new approach can be used for scientific-image analysis, the immediate goal of 
this pair of reports is to provide a mechanism for evaluating the quality of particular 
dither patterns in terms of their ability to reconstruct a scene. 
                                                
1 The issue of detector gaps will be non-trivial for NIRCam; a minimum of 3 large dithers are necessary to 
minimally cover all gaps in the field. 
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3 The Effective Scene 
In an epic tutorial entitled Combining Undersampled Dithered Images, Lauer (1999) 
makes the distinction between image-reconstruction procedures that involve 
deconvolution and those that do not.  One of his main points, which was under-
appreciated at the time, is that considerable image reconstruction can be accomplished 
without recourse to deconvolution procedures.  Deconvolution is well known to amplify 
noise and is extremely sensitive to errors in the PSF (point-spread function), so it should 
be avoided, if possible. 
Lauer begins by noting that there are several scenes of interest.  There is the raw 
astronomical scene that arrives at the telescope and can have structure at all spatial scales, 
including the finest scales imaginable.  The raw scene then goes through the telescope’s 
optics, which essentially convolves it with the instrumental PSF.  This new scene has 
structure that is only as fine as can be resolved by the PSF.  Intrinsic structure in the 
astronomical scene that is finer than this gets blurred out by the PSF.  This “optical” 
scene is collected in the detector pixels and read out for analysis. 
There are two equally valid ways to think of this last operation.  We can think of it as an 
integration of the flux across the face of each pixel in the two-dimensional detector array. 
This is the normal way of thinking about how images are made.  But, we can equivalently 
think of the pixelization operation as an additional convolution of the scene with the 
pixel-response function.  The pixel values would then represent point samplings of this 
doubly convolved scene.  Since convolution is commutative, we can treat the double 
convolution as a single convolution with a composite PSF.  We will call this the 
“effective” PSF.  It is simply the instrumental PSF convolved with a pixel: 
                    ψE = ψI ⊗ Π, 
where Π represents the response function of a pixel.  It usually resembles a top-hat 
function, but it can have very different shapes.  It can be smaller than an actual pixel, in 
the case where the pixel edges are insensitive; or it can be larger than a pixel, in the case 
where there is charge diffusion or inter-pixel capacitance.  In practice, all of these effects 
can be present at the same time. The edges of pixels can sometimes be less sensitive 
because they contain electrodes to keep the electrons confined to the pixels; this leads to 
pixel edges that are less sensitive.  Charge diffusion happens when a photon that lands at 
the edge of one pixel ends up generating an electron with enough kinetic energy to kick it 
into an adjacent pixel.  Inter-pixel capacitance arises when the charge measured in one 
pixels can be affected by charge stored in adjacent pixels.  The function Π can have 
structure on very fine spatial scales, since it can have edges as sharp as the edge of a 
pixel.  Therefore the structure in ψE will be largely limited by the smoothness of ψI, the 
instrumental PSF from the telescope’s optics. 
Lauer encourages us to think of the detector image in the second way.  Each detector 
pixel samples the “effective” scene at one point, and the array of pixels in an image 
sample the effective scene at an array of points.  The effective scene is simply: 
                 SE = SI ⊗ ψE, 



JWST-STScI-002199 
SM-12 

 
Check with the JWST SOCCER Database at: http://soccer.stsci.edu/DmsProdAgile/PLMServlet 

To verify that this is the current version. 
 

 - 4 - 

where SI(x,y) is the infinite-resolution scene delivered to the telescope.  Essentially, the 
smooth, 2-D function SE(x,y) tells us how much flux an image pixel would receive if it 
were centered at location (x,y) in the reference frame.   
In conceptualizing the meaning of SE(x,y), it helps to imagine a thought experiment where 
you have a pixel that can be moved arbitrarily across the astronomical scene that is 
delivered to the face of the detector.  For each location of the pixel, there is a particular 
number of electrons that would be recorded if it were placed there and exposed for the 
integration time.  It is easy to see that the number recorded in this pixel would vary 
smoothly and continuously as the pixel is moved across the scene.  If the scene that 
impinges on the detector is undersampled and has sharp features, then it is easy to see 
that the 2-D effective image will have similarly sharp features, as the features go in and 
out of the pixel-sized window. 
The 2-D function SE is the product of a convolution, so it can have only as much structure 
as ψE, which itself is limited by the instrumental PSF, ψI.  An observed image can then be 
thought of as an array of point-samplings of this smooth, two-dimensional function.  
These point-samplings are naturally spaced by the distance between pixel centers.   To 
the extent that these pixels are spaced finely enough to sample all the structure in SE, then 
⎯ apart from detector artifacts and noise-related issues ⎯ a single image can be 
considered a full representation of the scene.  However, if the pixels are spaced farther 
apart than the resolution scale in SE, then the pixels in a single image will not adequately 
sample the effective scene, and as a result we will have imperfect knowledge of it, even 
in the absence of bad pixels or noise. 
It is well known that dithering can mitigate the impact of bad pixels or cosmic rays.  But 
dithering can also mitigate the effects of undersampling.  If we shift the sample grid by 
half a pixel in the x direction, then combine the data in both exposures, we will end up 
with twice the frequency of samples along that axis.  Structure that was too fine to be 
observed with the 1-pixel-spaced sampling, might now be detectable with this 0.5-pixel-
spaced sampling.   
Figure 1 illustrates these concepts.  Panel (a) shows the astronomical scene, and the 
“instrumental” scene (SI) that results when the infinite-resolution truth is convolved with 
an undersampled optical PSF.  Panel (b) shows the “effective” scene (SE) that results 
when this is subsequently convolved with the profile of a pixel.  Panel (c) shows how this 
effective scene is sampled by real-image pixels.  Depending on where the pixels are  
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Figure 1:  (a) The raw astronomical scene and the optical/instrumental scene (SI) delivered to the 
detector.  PSF shown at left, with the size of a pixel marked immediately below it.  (b) The optical 
and effective scenes (SE).  (c) How two different dithers would observe the scene, and how we would 
interpolate the image using each dither independently.  The pixel boundaries for each are shown 
along the bottom of the panel.  (d) How a combined version of the two images would sample and 
interpolate the scene. 

centered relative to the objects, a very different scene can be perceived.  The filled dots 
correspond to the locations in the field where the two different exposures sample the 
scene.  The colored lines are splines that connect these observed pixels.  Without more 
information than a single image contains, this is the best estimate we have of what the 
scene is doing between the pixels.  It is clear that a single image is not able to recover all 
the structure in the scene and two differently sampled observations imply very different 
scenes. 
Panel (d) shows how well we can reconstruct the scene if we have the benefit of both 
dithers.  Here, we have “interlaced” the dithers to double our sampling of the scene.  The 
interpolation of the scene is now extremely robust:  we have recovered all the structure in 
the scene. 
Lauer’s main thesis is that observations with different dithers can be combined in this 
manner without ever leaving the purely observational domain.  The effective scene is a 
purely observational function that is sampled regularly, though sometimes inadequately, 
by the image pixels.  A complete representation of the effective scene can be 
reconstructed by simply combining multiple dithered observations.  This procedure is 
direct and involves no deconvolution.  As such, it should reduce noise, rather than 
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amplifying it.  Furthermore, the procedure depends on no assumptions about the PSF, 
except that it is the same for all exposures. 
Lauer advises that if, in the end, information in the intrinsic scene SI is desired on a finer 
scale than can be discerned in this effective scene, then the best thing to do would be to 
first construct this effective scene, and only then to apply a deconvolution algorithm to it.   
A properly reconstructed effective scene SE will be well-sampled and should be more 
amenable to such an deconvolution operation2.  Performing a deconvolution on poorly 
sampled individual exposures involves many unknowns at the same time:  the pixel-
response function, the instrumental PSF and furthermore it can recover no more structure 
than one resolution element per image pixel. 
While deconvolution was quite popular in the early days of HST, particularly when a 
spherically aberrated PSF was still the best the telescope could produce, it became clear 
over time that deconvolution rarely produced unique, definitive results.  So, most current 
image-analysis techniques focus on determining the effective scene (or similar 
constructs) or on parametric forward-modeling-type procedures. 
 

4 Reconstruction Of The Effective Scene 
The above discussion presented the concept of the effective scene.  We showed that this 
scene is directly observable in the pixels of individual exposures, even though single 
observations cannot always perceive all of its structure.  There are many approaches to 
reconstructing a super-sampled image of the scene from multiple independent dithers.  In 
this section, I will give an overview of common image-reconstruction approaches that 
aim to recover a well-sampled scene from under-sampled images. 
It is worth noting at the outset that while there is in fact a single effective image that can 
be considered to be the parent for a given set of dithered observations, there is not always 
enough information in the achieved dithers to arrive at this optimal product.  Given this 
frequent fundamental limitation to typical data sets, many image-combination algorithms 
must be robust for these sub-optimal cases, and as such they have improving the 
sampling as but one of their many goals.  Drizzle is one such algorithm (see Fruchter 
& Hook 2002). 
 

4.1 Interlacing 
A super-sampled composite image can most easily be constructed from a set of images 
that has been dithered in a regular square pattern.  The simplest regular pattern is a 4-  
 

                                                
2 We note that such a deconvolution would involve ψE, and not ψI and Π individually; in practice we rarely 
need to know ψI and Π separately, since we only encounter ψI  after it has been integrated over pixels and 
we only encounter Π in the context of the point-spread function (see Anderson & King 1999 for a 
discussion).  If we could move pin-point laser sources around the detector, we could recover  Π without ψI, 
but we do not generally have such data.  Thankfully, we do not require it. 
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Figure 2: The first four panels show how the pixels from four dithered images map onto the pixels of 
the reference frame (solid pixel frame).  The pixel centers are marked.  The fifth panel combines the 
mappings, but keeps the original reference-frame pixel scale.  The final column shows that if we re-
bin the reference-frame pixels, we can interlace the samplings to directly supply values for the finer 
pixels. 

point box dither:   (0.0, 0.0), (0.0, 0.5), (0.5, 0.0) and (0.5, 0.5), and it can be constructed 
by simple interlacing.  Often the individual dithers are offset by whole-integer pixels as 
well, in order to mitigate the impact of single bad pixels.  So long as the shifts are small, 
the sub-pixel dither will remain coherent across the detector, but if the shifts are too 
large, then distortion will cause them to become non-optimal at the edges.  
Figure 2 shows how the pixels in the above pattern map onto the reference frame.  The 
four panels on the left show in dotted lines the boundaries of the pixels in each exposure.  
This figure shows the pixels in the sense of integrating over the instrumental scene SI that 
is delivered by the telescope optics to the detector before pixelization. 
If we think of each pixel in the second sense discussed above, then we can map the center 
of each pixel into the master frame and consider the pixel value to be a point-sampling of 
the continuous 2-D effective scene, SE.  Recall that the effective scene is simply the 2-D 
function that tells us how much flux would be recorded by a pixel that is centered on the 
sampled location in the scene.  We can construct a 2× super-sampled version of SE by 
simply interlacing the pixels of the four dithers as shown in the rightmost panel.  This 
new image has twice the sampling of the original image, and is able to sample 2× finer 
variations.  It is important to keep in mind what this image represents.  It is a super-
sampled version of an original exposure.  It does not represent the instrumental 
scene SI integrated over smaller pixels.  It does represent SI integrated over the 
regular “large” image pixels, but sampled more finely. 
Figure 3 provides an example of an interlaced 2-D reconstruction.  The image on the left 
shows a finely sampled image of a simulated effective scene that contains an equal-
brightness binary with a separation of 1.25 image pixels in WFC3/IR through filter 
F110W.  This scene is imaged at four different dithers, and the 5×5-pixel cut-outs from 
each dither are shown in the upper right.   Several of these images appears to be slightly 
extended in the horizontal direction, but otherwise it looks like it could be one source.  If  
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Figure 3:  (Left) The simulated effective scene at ×4 the pixel sampling.  (Top right) the scene as 
observed in four different box-dithered images.  (Bottom right) The shift-and-add ×2 reconstruction 
of the scene and the interlaced reconstruction. 

we do a simple shift-and-add combination we get the ×2 sampled image in the bottom 
middle panel, which is clearly blurrier than the true effective scene.  The source shows a 
clear extension, but it is not clear whether this is two sources or a resolved extended 
source.  The interlaced image is shown on the bottom right.  Each pixel in this image 
comes from one of the pixels of the four source images.  The binary nature of the source 
is now clear.  Note that the interlacing did not improve the resolution of the scene, which 
was limited by the structure present in the effective image on the left, but it did improve 
the sampling of the output scene.  Shifting and adding actually degraded the resolution. 
In summary, interlacing is the ideal way to improve the sampling of a scene.  It retains all 
of the information in the individual exposures and provides the best possible sampling for 
a given number of dithers.  Unfortunately it requires a perfect dither.  To the extent that 
the dithering is not perfect, the image sampling will be irregular, and the pixel values in 
the output image will not reflect the value of the effective scene SE at the centers of the 
output pixels.  In general, distortion in the optics will cause the pixel-phases of dithers to 
drift relative to each other from the center of the detector to the edge, so it is impossible 
difficult to ensure a good dither everywhere.  Moreover, it is anticipated that the FGS on 
JWST will be able to dither with an accuracy of 7 mas, which is about 20% of a NIRCam 
short-wave pixel, so our dithers will be limited to that accuracy.  This is all the more 
reason to come up with algorithms that work in non-ideal situations.  
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4.2 Drizzle 
Drizzle is by far the most common tool used to combine multiple exposures.  It is 
designed to accomplish several goals at once.  Among its many goals are:  (1) correction 
of geometric distortion, (2) rigorous conservation of flux, (3) the ability to robustly reject 
bad data, and finally (4) the improvement of pixel sampling where possible.  The pipeline 
version of Drizzle must do well on all these fronts, even for data sets that do not have 
adequate dithers for a proper sub-pixel restoration. 
One of the main reasons that Lauer wrote his 1999 treatise was his concern about the 
sampling properties of the Drizzle algorithm, which was still under development at the 
time.  He contended that a non-zero value for the drop-size parameter causes a pixel to 
influence a larger region of the effective image than its point-sampled nature would 
suggest.  There are sophisticated versions of the algorithm, such as Multi-Drizzle, 
that allow the user to empirically vary the drop-size and output-image sampling in an 
effort to come as close as possible to the true “effective” image for data sets where there 
exists an optimal dither (see Koekemoer et al. 2002).  However, at best the Drizzle 
procedure can only output an image that represents the effective scene convolved with an 
output pixel, since even with a negligible drop-size, where input pixels are treated as 
delta-function samplings of the effective scene, these drops will in general not always 
land at the centers of the output pixels, and therefore the output pixels will have 
samplings that correspond to various locations within that output pixel.  As such, 
Drizzle can only attain the true resolution of the effective scene in the limit of 
infinitely small output pixels, which would require an infinite set of dithers to constrain. 
Equally concerning to Lauer is the fact that input pixels are not always “dropped” 
precisely at the centers of the destination pixels.  This means that the input-image pixels 
that contribute to a given destination pixel could easily have some average offset, in the 
flux-weighted sense, from the center of the destination pixel.  As a result, the value 
determined for the destination pixel would not correspond to the value of the “effective” 
image at the destination pixel’s center in the output array, but rather the arrived at pixel 
value would correspond to that of the weighted centroid of the contributing pixels.  The 
destination image will thus in general have uneven sampling, and it could be dangerous 
to analyze it by traditional routines, which generally assume regular sampling (such as 
those that do PSF-fitting, deconvolution, parametric shape-modeling, etc).  These caveats 
are well described in the Drizzle documentation. 
It is worth underlining that the mandate of Drizzle was considerably broader than 
simple reconstruction of the effective scene in optimal circumstances, and it has 
accomplished its many goals admirably, as can be witnessed by its longevity and 
continued popularity.  It is currently anticipated that Drizzle will be a major part of the 
JWST pipeline, so it is not going anywhere.  Nevertheless, in acknowledgement of the 
possibility of improvement, a new beta version, called iDrizzle, has recently been 
developed (Fruchter 2010) in an effort to address many of Lauer’s sampling concerns. 
A final concern voiced in Lauer (1999) is there are correlations between the pixels in 
Drizzle’s output image when there is a non-zero drop-size .  To some extent, some 
correlations between output pixels cannot be avoided.  If an image pixel samples a 
location of the scene exactly between two output pixels, then by symmetry, it will 
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contribute equally to both of them.  Lauer’s main concern is not that correlations are 
present (apart from the case of perfect interlacing, they must be), but rather that they are 
not quantified and are often ignored by users.  Drizzle does weight the input pixels by 
exposure time, and uses this information to estimate the ultimate error in the flux in the 
pixel, but the correlations between pixels are not considered. 

4.3 Fourier reconstruction 
Lauer (1999) recommends a Fourier-based approach to combine individual dithered 
images into a super-sampled composite.  He takes a set of dithered images and maps each 
pixel into the reference frame.  He then determines how many Fourier components are 
needed to represent all the structure in the scene, and solves for the band-limited 
transform that best represents the mapped samplings.  The inverse of this transform is the 
estimate of the super-sampled composite.  The sampling of the destination frame is 
rigorously regular, since it comes directly from the Fourier transform. 
This Fourier approach works well over small regions, but it breaks down in the presence 
of distortion, which causes the spacing between dithers to change across the region being 
solved for.  The Fourier approach is also not optimized to identify and remove artifacts, 
or to geometrically rectify the scene, though such modifications could be accomplished 
through iteration. 

4.4 The need for improvement 
Lauer’s Fourier approach comes the closest to generating a super-sampled version of the 
effective scene, SE.  Unlike Drizzle, the Fourier approach is able to rigorously 
constrain the sampling in the output image to be regular.  It is also able to make some 
assessment of covariances between pixels.  However, it does have several limitations.  It 
does not have a direct mechanism for dealing with artifacts such as bad pixels or cosmic 
rays in the input images, or pixels with different weights.  Also, in its current 
formulation, it can operate only over a limited region of the image, since it assumes the 
dithers to be fixed relative to each other and to have the same orientation.  Although one 
of Lauer’s concerns with Drizzle has to do with correlations among pixels, some 
correlations should be present among Fourier-reconstructed pixels, but he does not 
provide an explicit mechanism for evaluating such correlations in his formalism. Finally, 
Lauer approach has no mechanism to deal with geometric distortion, so the image-
rectification phase would have to be done at some later time. 
Drizzle, on the other hand, does properly account for distortion and is able to merge 
images taken at different orientations.  It is also able to evaluate data quality and reject 
previously known bad pixels and pixels that are found to be discordant (such as CR-
impacted pixels).  Its main limitations are threefold.  First, while it aims to improve 
sampling, the finite drop-size of the pixels and the way it constructs the (strictly positive) 
weights for the output pixels means that the output pixels do not correspond to the 
effective image, but rather to a version of it that is blurred by the output-pixel and the 
drop-size profiles.  Second, it does not rigorously preserve the output-image sampling.  
This means that the effective center-of-light for each pixel can be offset by a fraction of a 
pixel from the nominal output-pixel center.  Finally, Drizzle has no mechanism to 
estimate covariances among the output pixels.  Understanding the covariances and 
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properly including them in the analysis will be important for any algorithm that fits 
models to pixels.  None of these concerns should take anything away from Drizzle’s 
universal appeal, but if our aim is to construct a properly sampled composite image, we 
must improve on this. 
In the next section, I will come up with a least-squares-based image-restoration algorithm 
that takes the best aspects of both approaches.  The image it constructs will correspond as 
closely as possible to the “effective” scene, which is sensed directly in each individual 
exposure, albeit with inadequate sampling.  The approach will allow for distortion and 
different orientations among the input image pixels.  It will also incorporate an iterative 
approach in an effort to reject image artifacts and otherwise discordant pixels, and can 
include proper error-weighting for pixels.  Finally, it will rigorously preserve the regular 
sampling of the output image, and will also allow an explicit calculation of the 
covariances among the neighboring pixels. 
 

5 A Least-Squares Approach 
At the heart of the new approach that will be presented here is a least-squares formalism.  
The goal will be to take a large number of samplings of the effective scene (which come 
from multiple dithered exposures) and determine the single composite image that best 
represents all the observations. 
We will assume in the following derivation that either using the telemetry information in 
the image headers or using previous star-based transformations, we can transform the 
location of the center of each pixel in each individual exposure into the reference frame 
with essentially no error.  This is a standard assumption of both Drizzle and Lauer’s 
algorithm.  We also assume that the scaling and background of the pixel values in each 
exposure have been adjusted to correspond to the same exposure time and sky level.  We 
will further assume that the PSF is the same for all exposures, so that each exposure is in 
fact sampling the same “effective” scene.   It would be interesting to evaluate how 
imperfections in the transformations or variability in the PSF (with time or orientation) 
will impact image reconstruction, but since we do not yet know how stable JWST (PSF-
wise and distortion-wise), it is hard to consider these issues at present.  Here, we will  
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Figure 4:  (Top) The sampling of the reference frame achieved by a random 8-point dither pattern.  
The solid dots indicate ×1 reconstruction sampling on the left and ×2 reconstruction sampling on the 
right.  (Bottom) An optimal 8-point dither pattern with the same sampling.   In all panels, the first 
exposure is shown as the blue crosses. 

confine ourselves to the general issue of reconstructing a single effective scene from a 
general assortment of samplings. 
Once all these conditions are met, we should have a well-posed problem.  We have a set 
of samplings, as shown by the ×’s in Figure 4.  Each of these samplings comes from one 
pixel in one of the input images and consists of a location in the reference frame  (x,y) 
and a pixel value (P).  The samplings from the “first” image are highlighted as blue 
crosses.  The samplings might also include an estimate in the error in the pixel value, but 
for simplicity here, we will assume they all have the same error.  Each sampling 
represents a point-measurement of the “effective” scene at its location in the reference 
frame, in that it literally is a measurement of the flux recorded by a pixel placed at a 
particular point in the scene.  Our task is to find a representative value for the scene at the 
locations of the ‘s, which represent the centers of the pixels in the destination image.  
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To distinguish them from the  image pixels, we will refer to them as “grid-points” here.  
We have the flexibility to increase or decrease the sampling frequency of the destination 
image, as is shown schematically in the right-hand panels.  The two sampling regimes 
shown are ×1 and ×2, but there is no reason we could not have ×1.5 or even ×1.31. 
If we want to solve for the set of grid-point values that best represent the observed 
samplings at the × locations, we need to know how the values of the grid-points can be 
used to predict the effective image SE at the location of the samples.  This will involve 
finding some way to interpolate among the grid-points at the locations of the observed 
constraints.  If we can do that, then we can optimize the values of the grid-points to best 
represent the collection of samples.  Our additional aim is to linearize the problem, so 
that we can use simple linear least-squares to arrive at the set of ’s that best represent 
the set of ×’s.   
Clearly if there are as many grid-points as sample points, then the output image will be 
just barely constrained.  If there are more grid-points than samples, we will be under-
constrained, and if there are fewer, we will be over-constrained.  We can afford to space 
out the grid-points as we see fit in order to both ensure a sufficiently constrained 
problem, but also to properly correspond to the anticipated structure in the “effective” 
image.  There is no sense in sampling SE more finely than is justified by the structure in 
ψE, so the goal should be to set the output pixel scale to match this, provided there are 
enough contributing images and provided they are adequately dithered. 
An additional benefit of linearizing the problem is that as a by-product of inverting the 
least-squares normal equations, we will get estimates of the variances and co-variances in 
the pixel values.  This will figure prominently in the second report in this series. 

5.1 Setting up the least-squares problem 
In solving for the values of the grid-points, our goal is to find the set of grid-point values 
such that when the grid is interpolated at the location of the samples, the residuals 
between the interpolated prediction and the observation are minimized (in a least-squares 
sense).  So, before we can solve for the grid points in terms of the observed samples, we 
must first determine how to estimate the value of the grid at the location of each of the 
samples.  In general, the samples will find themselves in-between grid-points.  We must 
therefore do a two-dimensional interpolation within the grid.  Under the formalism we 
adopt below, the interpolated value will simply be a linear combination of the 
neighboring grid-points: 

,                                          (1) 
 
 
where SE(x,y) is the value of the “effective”-image grid interpolated at position (x,y) in 
the output-image frame.  The coefficients aij are fixed for a given (x,y) location and tell us 
how the value of each grid-point G[I,J] contributes to the interpolated value of the 2-D 
function.  With the bi-cubic spline interpolation that we will adopt here, only the grid-
points within ±2 pixels of a given location have any impact on the interpolated value at 
that location.  If we have a well-sampled image that we want to interpolate, the above 

! 

SE(x,y) = aij "G[I ,J ]
abs(I #x )<2
abs(J#y )<2

$
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equation will allow us to sub-sample it in a way that is continuous with continuous first 
derivatives. 

5.2 The big-picture plan 
Once we have a way to calculate the coefficients in the above linear relation, we will 
know how to estimate the value of each pixel sample from the values of the grid-points, 
since we assume that we have perfect knowledge of the reference-frame location (x,y) for 
each pixel.  So, since we can express the value of the each of the observed pixels in terms 
of a linear combination of the grid-point values, it should be possible to invert the 
problem and treat each pixel as a constraint on the grid-points.   We will of course need 
many observed-pixel constraints before we can solve uniquely for the many grid-point 
values, but the concept is clear. 
To solve for the grid, at a minimum, we need at least as many constraints as we have 
grid-point values to solve for, but ideally we will over-constrain the grid with many more 
observed pixels than grid-points.  Each pixel in each contributing exposure represents a 
single constraint on the grid: 

(2) 
 
Here, pixel Pijn is  located at location [i,j] in exposure n.  We assume that we have access 
to transformations that will tell us where this pixel maps to in the reference frame.  Its 
position will be (xijn, yijn) in this output frame.  The above relation then gives us a set of 
coefficients, aIJ;ijn, that tell us how each grid-point influences the value of the interpolated 
function at the sampled location.  The estimated pixel value is simply a linear 
combination of the grid-point values.   
In general, we will have a great many samplings of the scene, and each one will be 
located at a different place within the grid. As such, the model value for each sampling 
will be interpolated by a different linear combination of grid-points.  This can be thought 
of as a system of Nn×Ni×Nj equations (where Nn is the number of images, Ni is the 
dimension of pixels in i, and Nj is the dimension in j; this product is simply the total 
number of pixels) that relate the values of the grid-points to the values of the pixels.  If 
we can invert this system of equations, we can solve for G[I,J] as a function of the 
observed pixels Pijn:    GIJ  ⇒ Σijn bijn;IJ Pijn. 
But we are getting ahead of ourselves.  Before we think of solving for the grid-points, we 
must come up with an algorithm to interpolate the grid at an arbitrary location within the 
grid, and thus give us the value of the interpolated function, as in equation 1. 
 

5.3 An example from one dimension 
There is no unique way to interpolate functions, particularly in two dimensions.  So, 
before looking at the difficult two-dimensional case, let us consider what we can learn 
from one-dimensional splines.   
The goal of a 1-D spline is to provide the simplest function that goes through the 
specified set of points exactly, while simultaneously being continuous and smooth to 

! 

Pijn = aIJ ;ijn "G[I ,J ]
IJ
# .
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whatever degree is desired.  Usually smoothness in the first derivative is sufficient, but 
higher-order constraints are also straightforward to implement.  
One way to construct such a function is to record for a set of nodes along curve G the 
value of the function (trivial), and the value of the first derivative (obtained by fitting a 
polynomial to the neighboring nodes).  With these data in hand, we can now construct the 
function in-between any two nodes (M and N) by simply solving for the function that 
satisfies these four boundary conditions: 
 

.                                                   (3) 
 
 
Here, fMN(x) is the function that we wish to constrain between x = M and x = N, and G 
and G' represent the value and the derivative of the curve at the given nodes.  Note that in 
none of this have we required the nodes to be evenly spaced.  The solution becomes easy 
and regular when that is the case, but it is not necessary.  For simplicity, though, we will 
now assume regular-spaced grid-points in what follows. 
At the moment, we do not care what the function fMN(x) does outside of {M,N}, since this 
function will only be used for evaluating the curve between these two points.  Since we 
constrain the value and the derivative of the function at each of the endpoints, then when 
we evaluate the function in a similar manner between the next two points (N and O), the 
spline will be guaranteed to be smooth and continuous across the boundary. 
We have four constraints on fMN(x), so we will have to represent it with a cubic function 
of the form: 

(4). 
For simplicity, let us define φ = x − M and assume that the grid-points are evenly spaced 
by "1" unit, so that φ = 0 corresponds to the point at x = M, and φ = 1 corresponds to the 
point at x = N.  So, we are now seeking the function:   f(φ) = Aφ + Bφ2 + Cφ3 + Dφ4.  We 
can determine values for the coefficients A, B, C and D by evaluating the function f and 
its first derivative at points φ = 0 and 1: 

 
(5) 

 
 
 
We can now solve for A, B, C, and D to get:  

 
 

(6) 
 
 
 

! 

fMN (M) = G[M]
" f MN (M) = " G [M]
fMN (N) = G[N]
" f MN (N) = " G [N]

! 

fMN (x) = AMN + BMN x + CMN x
2 + DMN x

3

! 

f (0) = G[M] = A
" f (0) = " G [M] = B

f (1) = G[N] = A + B + C + D
" f (1) = " G [N] = B + 2C + 3D

! 

A = G(M)
B = " G (M)
C = #3G(M) #2 " G (M) +3G(N) # " G (N)
D = 2G(M) + " G (M) #2G(N) + " G (N)
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Then if we plug the above equation into the equation for f(φ) we find that:  
 

.                 (7) 
 

 
 
It can easily be shown that this satisfies our four constraints on the function and its 
derivatives at x = M and x = N from Equation (5). 
The right-hand side of Equation (7) contains the node points and their derivatives.  To get 
the node-point derivatives, we can use simple finite-difference techniques.   If we fit a 
parabola to the three points centered on each node n, we get G'[n] = (G[n+1]-G[n-1])/2. 
Specifically, G'[M] = (G[N]-G[L])/2 and G'[N] = (G[O]-G[M])/2.  We can then plug-in 
the formulae for these derivatives into the above equation to get everything in terms of 
the values of the node-points at L, M, N, and O: 
 

(8) 
 

 
 
This is a powerful equation.  It gives us the spline-fit value for any point x (φ = x − M) 
between node-points M and N, simply in terms of the four surrounding node-points at L, 
M, N, and O.  It is a completely closed-form solution for the smooth continuous function 
that takes us from grid-point M to grid-point N.  Note that, if we use the same procedure 
to compute the function over the adjoining region between N and O, the spline is 
guaranteed to be continuous across the node-N boundary up to and including the first 
derivative, since both branches will constrain it to go through N at G[N] with the 
derivative Gʹ′[N].  We would like to come up with such a convenient formalism for the 
two-dimensional case. 
 

5.4 Going to two dimensions 
The 1-D family of splines is closed-form and can be nicely scaled in terms of polynomial 
order.  We can define a quadratic fit to the three node-points centered on a particular 
node-point to get the first two derivatives, or a quartic fit to five points centered on a 
point for derivatives up to and including G (4).  We can then design a polynomial to 
respect these derivatives and it is guaranteed to be smooth in-between the specified 
nodes. 
Things become more complicated with two dimensions.  In the 1-D case, we are 
constrained to go through the node points as we move along the function.   Thus, we were 
able to constrain the function at each node and we were certain that nothing could go 
“around” the nodes.  In the 2-D case, one can move around the (x,y) space of the grid 
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from the domain of one grid-point to that of another and never actually go through any 
grid points.  Rather than simply constraining the function and its derivatives at the grid 
points, we will have to constrain it in many more places (for example, along the lines 
between the pixels).  
In the 1-D case above, we chose to constrain the function and its derivative at each node 
point, which gave us four boundary-value constraints to satisfy for the function between 
two nodes.  This required a third-order polynomial, and naturally the four nearest node-
points total to constrain that.  The 2-D Cartesian polynomials have 1 term to 0th order, 3 
terms to 1st order, 6 terms to 2nd order, 10 terms to 3rd order, 15 terms to 4th order, and 21 
terms to 5th order: 
 
 

(9) 
 

 
 
 
Once we decide what degree of polynomial to use, we must consider which pixels to 
include.  Unfortunately, with 2 dimensions, it is not trivial to define a symmetric region 
about a given point of interest.  Figure 5 shows several symmetric regions about various 
points, which are either centered upon a pixel or upon the gap between pixels.  There are 
ways to get 4, 9, 12, 13, 16, 21, 24, and 25 in a symmetric fashion. 

 
Figure 5:  Symmetric 2-D regions of pixels that could be fitted with 2-D polynomials. 

In our spline formalism, we would ideally like to map the number of parameters to the 
number of constraints exactly, so that we can ensure rigorously that the model will go 
through the grid points.  As mentioned above, we managed to do this in the 1-D case with 
the 4 constraints (values and derivatives at surrounding node points) and 4 contributing 
pixels.    
Note that in two dimensions, the only one of the above pixel distributions that has the 
same number of elements as one of the polynomial orders is the 21-pixel region, which 
matches the 5th-order polynomial.  If we consider constraining this just along the x axis, 
then we have 5 pixels and 6 unknowns (A, B, D, H, L, and Q for 1, x, x2, … x5).  So, the 
two are not well-matched order-wise:  we have no way to constrain all six coefficients.  
The non-commensurate nature of the 2-D case will force us to do things somewhat 
differently.  

! 

f (x,y) = A
+ Bx+Cy
+ Dx2+ Exy+Fy2

+ Hx3 + Ix2y+ Jxy2 + Ky3

+ Lx4 +Mx3y+ Nx2y2 +Oxy3 + Py4

+ Qx5 + Rx4y+ Sx3y2 +Tx2y3 +Uxy4 +Vy5
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5.5 A bi-cubic spline 
One approach is to do a bi-cubic spline.  The bi-cubic spline will have the same benefits 
as the 1-D spline, namely that it will be the simplest function (in terms of polynomial 
order) that goes through all the grid-points while being continuous down to the first 
derivative.  The bi-cubic spline will satisfy this in both dimensions. 
The aim would be to come up with a function that represents the value of the grid within 
the square region between the 4 grid-points:  F, G, J, and K in Figure 6.  This involves 
solving for four horizontal cubic splines, one through each row, using the 1-D formalism 
above.  These four splines are labeled SPLINE-X1 through SPLINE-X4 above.  We then 
evaluate the splines at the Δx location of the target point to get a series of four equally 
spaced values at y = −1, y = 0, y = 1, and y = 2 (blue squares).  Next, a vertical spline is fit 
through these four values.  Finally, we can evaluate this spline at the y location of the 
target point of interest to get the value of the grid at location  (x,y) =  (IF+Δx, JF+Δy).  
One could also do the same thing with y first then x.  It turns out that the results are 
identical. 
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Figure 6: The process of evaluating a bi-cubic spline for the point at the solid black circle.  First, four 
1-D splines in x are constructed in order to evaluate the function at the array of crosses, which are at 
the x-coordinate of the desired point.  Then, a spline is fit to these four points (dashed line) in order 
to determine the value at the y-coordinate. 

The equations for the four splines along x can be written out, directly from Equation 8 
above: 
 
 

 
 

. (10) 
 
 
 
 
The equation for the spline along y is then: 
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.                              (11) 

 
 
 
Plugging in for α = f1(x), β = f2(x), γ = f3(x), and δ = f4(x), we get: 
 

 
 
 
 
 

               .                 (12) 
 
 
 
 
 
 
 
 
This can be solved for something of the form: 

 
 
 
 

    .   (13) 
 
 
 
 
 
 
This is the 2-D analog to equation (8).  It tells us what the value of the bi-cubic-spline-
interpolated grid is for any (x,y) within the central four grid-points (F, G, J, and K) in 
terms of all 16 relevant grid-points.  The grid-points outside of this do not affect the value 
of the function within this inner square.  If we write the 1-D spline evaluation matrix 
from equation (8) as m: 
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, 

,                                            (13) 
 
 
 
then the elements of w can be seen to be: 
 

(14)  
 
where pʹ′ and qʹ′ are the integer parts of [1+(p-1)/4] and [1+(q-1)/4], respectively, and P 
and Q are and (p − 4⋅pʹ′) and (q − 4⋅qʹ′), respectively.  Written out fully, then: 
 
 

 
 
 

(15) 
 
 
 
 
 
 
This is an extremely useful matrix.  It means that we can accomplish our original 
objective by writing the function f(x,y) as: 

 
 ,                                (16) 

 
where the sum over p represents the polynomial terms Tp, on the left of equation (13), and 
the sum over m represents the grid-point values, Gm, with G1 = A, G2 = B, G3 = C, ... and 
G16 = P.  The 16 × 16 matrix represented by wmp is simply a set of numbers that will be 
fixed for all time.  It relates the value of the grid-points to the value of the interpolated 
function in terms of the polynomial at the sample location.  This compact expression 
provides the bi-cubic spline interpolation for the square region bounded by grid-points F, 
G, J, and K.  In order to get the curvature of the interpolated function right within this 
region, the expression needs access to all 16 of the neighboring grid-points.  It bears 
noting that f(x,y) is not linear in x and y, but it is linear in the Gm grid-point values.  This 
is what will make it possible to do least-squares optimization of them in the current 
situation where x and y are known and fixed for a given grid-construction. 
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Now that we have this matrix in hand, we can simply use it to evaluate how a grid would 
be interpolated for a particular sampling.  This simple formalism has enormous benefits.  
We do not have to explicitly set-up and fit polynomials each time we want to interpolate 
the grid:  the setting-up has already been done once and for all.  We simply have to 
multiply a 16×16 matrix by two 16-element vectors.  One of these vectors corresponds to 
the polynomial basis function, Tp, for the particular (Δx, Δy) offset, and the other 
corresponds to the 16 grid-point values.  

5.6 Constraining the grid 
The form of the above expression means that, as we had hoped, the interpolated grid 
value can be written down as a direct linear combination of the grid-point values.  Thus if 
we have a fixed set of samples P1 to PN of a 2-D function that correspond to a fixed 
number of points (xn,yn) relative to an array of grid-points, then this formulation allows us 
to estimate the value of the samples in terms of the grid values: 
 

 
 

(17) 
 
 
 
 
 
 
 
The λ matrix must be constructed on-the-fly based on the specific location in (x,y) of 
each of the samples.  It involves only matrix-vector multiplication, but no matrix 
inversion.  
 
The system of equations in (17) can then be solved by least-squares, provided we have at 
least as  many constraints as unknowns (N ≥ M).  To get the least-squares result, we 
construct: 
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and set ∂χ2/∂Gm = 0 for each grid-point m.  This gives us a system of M = 16 equations:

! 

 
 

 
 

(19) 
 
 
 
 
 
 
f there are more samples than grid-points (N>M), and the samples are not pathologically 
distributed, we can invert the symmetric matrix a to get the Gm values as a function of  
the sampling pixels Pn’s: 

 
 

(20) 
 
 
 
This gives us the least-squares solution for the grid-points Gm given the pixels that 
sample the reference frame with their values Pn at locations (xn,yn).  We note that the 
matrix a is a function of the positions (xn,yn), so this matrix inversion will in general have 
to be done for the particulars of each particular scene we wish to recreate.  To be specific, 
to find a we must multiply wmn by the Tp polynomial to get the λmn array.  This will allow 
us to construct the a matrix, which is what we must invert to get the gridpoints Gm from 
pixel-constraints Pn. 

5.7 Covering larger areas 
The above formalism is based on finding the grid-points that best represent the function 
f(x,y) within the restricted square region between points F, G, J, and K.  Thus far, we 
have no mechanism either for incorporating samples that come from outside of this 
region or for constraining the grid-points beyond this. 
To extend this coverage, we can generalize the equations.  Any sample within the grid 
will fall between four samples as above, and we can then express the interpolated 
function at that location in terms of the 16 surrounding grid-points.  Each sample, then, 
will provide constraints on at most 16 different grid-points, and we can combine all the 
constraints into a single matrix inversion. 
If we consider the samples that lie within the region of the grid-point space that extends 
from −3 to +3 in both x and y, then in the above formalism, we will have to go out to −4 
and +4 — a 9×9 array — in order to deal with all the grid points that are constrained.  It 
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is awkward to constrain grid-points beyond the region of the samples, so within the 
border region, we can use bi-linear interpolation instead of our high-order polynomial 
interpolation.  This will allow us to bound the reconstruction and incorporate samples that 
cover the entire region −4 to +4.  Such an approach would have 9×9 = 81 grid points that 
need to be solved for, and would involve inverting an 81×81 matrix. 
In principle we could reconstruct an entire image this way.  For each pixel in the 
reconstructed image, we could find how its value contributes to estimating each of the 
pixels in the contributing exposures.  We could then do a least-squares reconstruction all 
at once.  Even for a “small” image that is just 1000×1000 pixels, this would involve 
inverting a one-million-element matrix, generally involving ~1012 operations.   
It would certainly be more efficient to do things in small patches at a time.  Patches of 
100×100 pixels would involve 108 operations, which we would have to do 10×10 times to 
cover the original 1000×1000 pixels, so it would take only 1010 operations and would 
thus go 100 times faster than doing the entire scene at once.  Clearly it is better to deal 
with small regions of the image at a time. 
We can construct an equation that tells us how many operations will be required as a 
function of the patch size.  For a given size S×S patch size, the inversion will take S4 
operations.  We will not get good values for the entire grid, since the 2 grid-points in the 
outer border will not be fully constrained by the pixel samples; we may also need to do 
some experimentation to see how broad the border region really needs to be to have no 
impact on the reconstruction.  At best, we will have adequate constraints only for the 
inner (S−4)×(S−4) points.  We will have to do the operation 10002/S2 times to get well-
constrained values for the entire 1000×1000 grid.   
Inverting a general matrix of size S takes S4 operations, and we will get from it (S-4)2 
constrained grid-points, so the number of operations per grid-point can be expressed as:  
S4/(S-4)2.  This function is plotted in Figure 7 below. It turns out that the most efficient  
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Figure 7:  The number of operations per grid-point solved for as a function of the number of grid-
points solved for. 

way to construct a large grid is to use a 9×9 patch, which will give us 5×5 well-
constrained grid-points at the center.  The entire image can then be built up by 
constructing such a local patch for a tile of points across the image. 
This report, and the companion report, will be more concerned with small-scale structure 
in reconstructed images, so we will not delve more into the build-up of larger 
reconstructions here.  Our emphasis will be on how well a scene can be reconstructed 
over a very small region ⎯ a region small enough for point sources or marginally 
resolved sources.  Thus, the 5×5 grid-point sweet-spot in the 9×9 grid will suffice. 
It is worth noting that the above calculation did not take advantage of the fact that the 
matrix that must be solved for is sparse:  each pixel constraint will affect at most 16 grid-
points, and the correlations between gridpoints will be limited to nearby neighbors.  It is 
likely that sparse-matrix algorithms could provide efficiencies that are much better than 
shown above, but that is beyond the scope of this document. 

5.8 Additional benefits of the least-squares approach 
The matrix formalism that we have developed here also allows us to solve for the 
covariance matrix, which will give us estimates of the errors in the solved-for grid-points 
(assuming we can estimate the errors in the samples) and will also give us the 
correlations between neighboring grid-points, so that we can assess how independent the 
values are that we find for the grid-points.  If we find that there are large covariances 
between neighboring grid points, we might want to increase the spacing of the grid 
points.  If this is discovered while evaluating the dither pattern, this information can help 
us to improve the dither pattern.  Either way, knowledge of how the grid-point values are 
correlated will be good to have. 
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In ordinary linear least squares, the (symmetric) covariance matrix Q is simply: 
, 

 
(21) 

 
 
where σ is the variance in the individual observations; it can be measured from the 
residuals, or estimated from a model for the S/N in each pixel3.  The error in our value for 
grid-point m, should then be: 

(22) 
 
and its covariance with grid-point mʹ′ will be: 

 
(23) 

 
The covariances can be particularly important when we want to assess whether we should 
believe gridpoint-to-gridpoint variations.  The covariances can also be used when fitting 
models to the output grid. 
It is interesting to note that the covariances flow directly from the overall error scaling 
and the location of the samples.  The actual grid-point values and structure in the scene 
are not relevant to how the values of the grid-points may or may not be correlated.  
However, adopting a different scheme for weighting the pixels differently will affect the 
covariances. 

5.9 Implicit assumptions 
As was mentioned at the outset, the above procedure makes several assumptions.  It 
assumes that all images represent a realization of the same scene, such that from image to 
image there is (1) no variation of the sky background, (2) no uncompensated-for variation 
of the exposure time, (3) no variation of the instrumental PSF, (4) no variation in the 
pixel shape, either due to dither-related distortion or due to different observations being at 
different roll angles, (5) no error in the distortion solution, which might cause pixels to be 
mapped to the wrong place in the reference frame, and finally (6) no intrinsic variation of 
the scene, such as variable stars or AGNs might generate. 
Violation of any of these assumptions could compromise our ability to come up with a 
single “effective” scene.  Some mitigation might be possible on several of these fronts, 
but we will not delve into that here. 
 

                                                
3 In this development, we have been assuming that all pixels have equal weights.  This is not a necessary 
assumption and we could easily incorporate different weights for different pixels in Equation (18) and 
propagate that information into the other equations. 
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6 An Example 
To show the power of this approach, we will assemble the F775W images from the UDF 
and will construct a least-squares composite image from them.  There are 276 images 
with typical exposure times of 1200 s.  We have chosen two targets, a bright star and a 
spiral galaxy.   
Figure 8 shows the star and galaxy images from a stack generated with a Drizzle-like 
program with pixels that are 25 mas on a side (half the native ACS pixel scale).  The star 
is located at  (03:32:39.09, −27:46:01.8) and the galaxy at (03:32:39.09, −27:47:24.0).  
For each, the image on the left shows a wide 80×80-pixel region around the source.  The 
middle panel shows a close up of the inner 19×19 pixels, and the right panel shows the 
same close up, but with the constituent samplings that come from the 276 contributing 
images.  Each blue dot represents the master-frame location of one pixel in one of the 
contributing images.  There is clearly a very dense sampling of the scene, and (by careful 
design) the dithers are evenly spread out. 

 

   

   
Figure 8:  We show stacks of the F775W UDF observations for a bright star (top) and a galaxy 
(bottom).  The left panel shows a region that is about 2 arcseconds on a side.  The middle panels show 
a region that is about 0.5 arcsecond on a side.  The panels on the right add the samplings.  The galaxy 
is shown with a linear scale, but because of its large dynamic range, the star was shown with a log 
intensity scale.   
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Figure 9:  This is a super close-up of the center of the galaxy, showing the locations of the many 
samplings of the scene available.  The yellow circles are samplings from the first exposure. 

Figure 9 shows a close up of the central 9×9 super-sampled pixels of the galaxy.  Again, 
the blue dots correspond to individual pixels from the 276 individual exposures in the 
data set.  We clearly have many tens of samples in each super-pixel-sized region.  We 
have highlighted in yellow the samples that come from the first exposure in the bunch.  It 
is clear that they trace out a very regular pattern, with a spacing of 2 output-pixels (the 
super-sampling is a factor of 2).  It is worth pointing out that the grid of pixels traced out 
by the first exposure is clearly not square:  the x and y axes of WFC are skewed by 
almost 9 degrees and have different pixel scales, as well. 
The next task will be to make use of these samplings and reconstruct the images using 
our new-found bi-cubic-spline-based algorithm.  A least-squares grid solution was 
constructed for both objects.  We solved for the grid in 9×9-pixel patches and spaced 
them every 5 pixels in x and y so that we could discard the outer 2 pixels of each patch, as 
the grid-points at the outside of the patch do not have samplings on all sides to constrain 
them.  It remains to be seen whether this adequately solves for all 5×5 of the inner pixels, 
but we will assume it is adequate here. 
The reconstructed image is shown in the top row of Figure 10.  The samplings along two 
horizontal strips are also shown, one through the center of the galaxy/star and another 
that has been offset vertically.  The samplings from the first image are shown in yellow to 
give a sense of how much information a single image provides.  Since our horizontal 
strips are only ±0.5 pixels tall in the ×2 super-sampled frame, sometimes the samplings 
from image#1 straddle the strip, but have no samplings within the strip. 
The top panel of plots shows the horizontal profile of the sources through their 
centermost pixels.  The black dots correspond to the raw samplings of the “effective” 
image from the individual contributing pixels.  The red dots are the samples that were 
discarded because they disagreed significantly with the model.  The filled yellow dots  
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Figure 10:  Horizontal strips of samplings 0.5 super-sampled pixels tall across the galaxy and the 
star, one through the center and one offset.  Image #1 is shown as yellow dots on the images.  It is 
worth noting that the background can vary frame can vary from exposure to exposure; this variation 
has been removed by a constant offset for each exposure. 
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show the grid-points of the model, and the yellow curve connects them with a 1-D spline.  
It is clear that the function goes nicely through the data.  The difference between data and 
model is shown at the bottom as blue dots.  There are no discernible trends remaining, 
either in the star image nor in the galaxy image. 
The PSF appears to be well represented in the ×2-sampled “effective” scene.  It is 
interesting to note that the raw samplings of the PSF exhibit a bifurcation around offsets 
of ±5 super pixels (2.5 raw WFC pixels). The reason for this is that the UDF was taken at 
two orientations differing by 90 degrees.  The WFC PSF is not azimuthally symmetric; in 
particular, the inner halo can be extremely lop-sided4.  The horizontal strip in the 
reference image goes from –x to +x in the first half of the UDF exposures, and from +y to 
–y in the other half.  The asymmetry of the PSF then shows up as a bifurcation of the 
scene in the reference-frame profile.  Note that while this is significant in the inner halo 
of the PSF, the core of the PSF is remarkably similar at both orientations.  This difference 
would only be relevant for sources that are extremely sharp and bright.  These features 
are 5 pixels away and down by a factor of 20 relative to the flux at the center of the star. 
Note that the galaxy is very nicely fit by the smooth curve.  The algorithm and the 
sampling easily resolve the central source, the bright arm to the right, and is able to track 
the smooth profile.  It is clear that “effective scene” formalism is a powerful way to 
visualize data taken at different dithers. 
The lower panels show the two scenes for a horizontal strip that is vertically offset 
downwards from the center.  The scale of the plot has been expanded to show the 
structure of these lower pixels.  Again, the model tracks the pixels extremely nicely.  
Even the PSF appears to be well modeled, even though half the samples come from 
orientations that differ by 90 degrees.  Clearly the outer halo of the PSF at 10 pixels’ 
radius has some 4-fold symmetry that the inner part at 5 pixels’ radius does not. 
The following array shows the covariance matrix for the central pixel of the star 
reconstruction: 
 
  0.00000  -0.00001   0.00004  -0.00011   0.00046  -0.00011   0.00004  -0.00002   0.00001 
 -0.00001   0.00002  -0.00006   0.00018  -0.00076   0.00019  -0.00007   0.00003  -0.00002 
  0.00005  -0.00008   0.00018  -0.00040   0.00193  -0.00039   0.00019  -0.00007   0.00006 
 -0.00012   0.00021  -0.00036   0.00089  -0.00430   0.00082  -0.00038   0.00018  -0.00014 
  0.00043  -0.00077   0.00178  -0.00418   0.02355  -0.00381   0.00187  -0.00071   0.00044 
 -0.00011   0.00022  -0.00047   0.00061  -0.00453   0.00112  -0.00046   0.00022  -0.00015 
  0.00004  -0.00008   0.00018  -0.00033   0.00185  -0.00042   0.00018  -0.00009   0.00006 
 -0.00002   0.00003  -0.00008   0.00013  -0.00089   0.00022  -0.00008   0.00003  -0.00002 
  0.00001  -0.00002   0.00005  -0.00008   0.00057  -0.00012   0.00004  -0.00002   0.00001 
 
The central value (0.02355) represents the variance.  It is quite low and is consistent with 
there being about 70 samples within the domain of each grid-point5.  The covariances of 
the central grid-point to the adjacent ones are also quite low (about 0.4%, roughly one 
fifth of the variance), indicating that there is very little correlation among the extracted 
grid-points.   
                                                
4 See Anderson & King (2006) for a discussion of how the ACS PSF varies with position. 
5 If this had been constructed by perfect interlacing, then all the samples for each pixel would be at the very 
center.  If we were to combine them, we would expect the variance for the central pixel to be (1/70) σ2, or 
0.014 σ2, and no co-variance. 
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It is worth noting that the covariance matrix is purely a function of the locations of the 
samplings and the weights that we assign to the pixels.  The actual value of the grid-
points in the scene do not enter into this at all.  We assumed here that all the contributing 
pixels had the same error (scaled to σ = 1).  If we had assumed that the brighter pixels 
had more Poisson error, then we would have put weights into the matrix constructions, 
and these values would change slightly, but the actual scene itself would still not directly 
affect the variances and covariances.  In other words, in the absence of poisson noise, 
there should be as much covariance between pixels on a flat background as there is at the 
centers of stars. 
 

7 Summary And Next Steps 
This report has provided an overview of image-reconstruction techniques that stop short 
of deconvolution.  It has shown that the multiple exposures in a dither pattern are all 
realizations of the same “effective” scene, and that it should be possible to reconstruct 
this fully-sampled parent image from its many children.  
In this context, we have discussed Drizzle and Fourier-based approaches, and found 
that both were unable to construct regularly sampled scenes in real-world situations.  In 
addition, neither could provide a direct estimate on how much neighboring pixels are 
correlated — an issue that will be important if we wish to evaluate dither patterns. 
We then developed a new image-reconstruction algorithm, based on least-squares, that 
ensures rigorously regular sampling and also provides a mechanism for estimating the 
errors in each pixel of the output image, as well as covariances among the neighboring 
pixels.  The machinery we have developed here will be used in a follow-on report on how 
to dither with NIRCam in a way to ensure adequate sampling of the effective scene.  The 
subsequent report will explore two problems.   
The first task will be to determine how much sampling is necessary in order to adequately 
represent all the structure in NIRCam images through various filters.  We should expect 
that images through F200W, where the detector is essentially Nyquist sampled, will 
require less super-sampling than images through F070W, where the detector is woefully 
undersampled. 
The second task involves evaluating the various dither patterns in order to determine how 
well each of them can be used to construct super-sampled images with various levels of 
over-sampling.  The secondary dither patterns have been designed to provide optimal 
spacing of dithers from 1 to 64 points, but the net dither achieved for a given data set will 
be the product of the coherently-phased secondary dithers, and the un-phased primary 
dithers.  It will be important to estimate whether a pattern that has 3 secondary dithers at 
3 primary locations will achieve similar results to a campaign that has 9 coherently 
phased secondary dithers at only 1 primary location.  In general, users will want to take 
as many primary dithers as possible, since large dithers mitigate L-flat errors and large 
artifacts better than small ones.  So, it will be important to know how best to divide up 
the dithers among primary and secondary to achieve adequate sampling, while at the 
same time maximizing the number of better-mitigating primary dithers. 
From a broader perspective, the techniques developed here could already be applied to 
existing data sets.  Before this can be done, however, it will be necessary to evaluate the 
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assumptions that have been made, namely:  (1) that the samplings have been accurately 
placed in the master frame, (2) that the PSF and the background do not vary from 
exposure to exposure, and (3) that all the data points are valid and have equal weights.  
Surely all of these will be violated at some level, and it will be worthwhile to explore 
how they impact the solution, or alternatively, how they might be mitigated.  One can 
imagine iterating to improve the placement of the samplings or find a way to normalize 
the contributing images to all have the same PSF and background.  As far as pixel 
weighting or rejection goes, this could also be done by iteration, starting with the 
anticipated S/N of each pixel.  But these improvements are well beyond the scope of this 
document, where the aim is simply to set up a mechanism to explore how the placement 
of dithers may fundamentally impact our ability to recreate the scene.  
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