Phase II Roadmap for Cycle 25
help@stsci.edu
Table of Contents Previous Next Index


HST Cycle 25 Phase II Proposal Instructions > Chapter 11: Advanced Camerafor Surveys (ACS) > 11.2 Mode = ACCUM Config = ACS/WFC

11.2 Mode = ACCUM
Config = ACS/WFC
Photons are counted on the Wide Field Channel CCD as accumulated charge, which is read out at the end of the exposure and converted to DN at a selectable gain. The DN are stored as 16-bit words in a data memory array. A full detector readout is 4144x4136 pixels, which includes 24 leading pixels and 24 trailing pixels of overscan per line and 40 virtual overscan lines.
11.2.1 Aperture or FOV
Allowed apertures for this mode are:
WFC, WFC-FIX, WFC1, WFC2, WFC1-FIX, WFC2-FIX, WFCENTER, WFC1-CTE, WFC1-IRAMP, WFC1-MRAMP, WFC2-MRAMP, WFC2-ORAMP, WFC1-IRAMPQ, WFC1-MRAMPQ, WFC2-ORAMPQ, WFC1A-512, WFC1A-1K, WFC1A-2K, WFC1B-512, WFC1B-1K, WFC1B-2K, WFC2C-512, WFC2C-1K, WFC2C-2K, WFC2D-512, WFC2D-1K, WFC2D-2K.
An appropriate ramp aperture (names contain "RAMP") must be specified when a ramp filter (names begin with "FR") is used, and may be specified for other spectral elements. Two readout options are allowed with ACS ramp filters: (1) full WFC readout (i.e., 4Kx4K pixels designated by "RAMP" apertures), or (2) one WFC quadrant readout (i.e., 2Kx2K pixels designated by "RAMPQ" apertures). Because the field of view of any ramp filter segment lies completely within one WFC quadrant, the RAMPQ apertures are usually more practical and preferred, as described below. No other apertures (subarray or otherwise) are supported for ramp filter observations. Moreover, STScI discontinued support of user-defined subarrays for all filters and grisms after SM4.
Because all four WFC quadrants are clocked simultaneously during readout, the amount of time (2.5 minutes) to read out the full 4Kx4K frame is the same as the time to read out one 2Kx2K quadrant. Consequently, there is no advantage to using the RAMPQ apertures from the perspective of readout time alone. However, users can record up to four images with the RAMPQ apertures (instead of just one image with the RAMP apertures) before triggering the data buffer dump to the solid state recorder. By dividing the buffer dump into smaller segments, the users can obtain shorter exposure without incurring large overheads during the buffer dump. This allows more efficient packing exposures in each HST orbit.
Only apertures WFC, WFC1 or WFC2 may be used with the following spectral elements: POL0UV, POL60UV, POL120UV, POL0V, POL60V, POL120V, and F892N (unless a ramp aperture and filter are also specified). The actual position of the target within the FOV for these spectral element/aperture combinations will be determined by the STScI based on detector performance.
The aperture WFC1-CTE is available to mitigate CTE loss. The WFC1-CTE aperture has the same area as the WFC1 aperture except that the reference position is 200 pixels from the upper-right corner of Chip 1, in both the AXIS1 and AXIS2 directions. Therefore WFC1-CTE is not appropriate for highly extended targets. Observations of targets placed here will be less affected by CTE loss than those placed at other commonly used apertures that are closer to the center of the detector.
For apertures and the quadrant ramp apertures (names end with "RAMPQ"), the proposal processing software will assign a subarray encompassing the field of view of the aperture. Applicable overscan and bias calibrations are automatically available. See the ACS Instrument Handbook for details. These subarrays cannot be modified.
Target location on the detector is the same for a full-frame ramp aperture and the corresponding subarray readout quadrant ramp aperture.
For Apertures WFC<chip><amp>-<size>, where <chip> = 1 or 2, <amp> = A, B, C, or D, and <size> = 512, 1K, or 2K, the proposal processing software will assign a subarray whose dimensions are 2048 x 512, 2048 x 1024, or 2048 x 2048 pixels in the imaging area, to be read out through the <amp> readout amplifier. All of these subarrays will also have 24 columns of physical pre-overscan, making the full X size 2072. The 2K subarrays will also have 20 rows of virtual overscan, making the full Y size 2068. Note that the appropriate one of these 2K subarrays will be used by default when a polarizer/F892N or quadrant ramp Aperture is selected.
Table 11.6 summarizes rules for Aperture and Spectral Element combinations, and whether a full-frame or fixed subarray readout is done.
11.2.2 Spectral Element
For the available ACS/WFC spectral elements, see Table 11.2, Spectral Elements for use with ACS/WFC Configurationa.Note: When F892N or a polarizer is specified, STScI will automatically assign a subarray containing the entire FOV provided by those spectral elements. The subarray is one-quarter the size of the full WFC array. Those subarray parameters may not be overridden.
11.2.3 Wavelength
If a ramp filter (any spectral element beginning with the letters “FR”) is specified, enter the desired central wavelength in Ångstroms. Table 11.4 gives the allowed minimum and maximum wavelength for each ramp filter.
Note: A wavelength should not be specified if a ramp filter is not being used.
11.2.4 Optional Parameters
CR-SPLIT
=
2 - 8; NO (default)
Specifies the number of sub-exposures into which the exposure is to be split for the purpose of cosmic ray elimination in post-observation data processing (see the ACS Instrument Handbook). The specified exposure time will be divided equally among the number of CR-SPLIT exposures requested. If CR-SPLIT=NO, the exposure is taken without splitting. If a pattern is also specified (see Chapter 8:Pointings and Patterns), the specified number of sub-exposures will be taken at each pattern point.
 
GAIN
=
2 (default) (e/DN)
Specifies the gain of the CCD electronics in e/DN.
AUTOIMAGE
= YES (default), NO
Controls the automatic scheduling of image exposures for the purpose of spectra zero point determination of grism observations. By default, a single short image through a standard filter will be taken in conjunction with each Exposure Specification using the grism for external science observations. A value AUTOIMAGE=NO will disable the automatic scheduling of the image exposure for the Exposure Specification on which it is specified. The parameter is allowed only on external science observations using the grism.
 
 
FLASH =
0 (default - means no post-flash), 1 - 5733
Specifies the number of electrons per pixel to add to the image by illuminating the detector with the post-flash LED. The upper limit corresponds to the longest flash permitted.
Estimate the number of background electrons expected using the ACS ETC. Also refer to ACS ISR 12-04 “Assessing ACS/WFC Sky Backgrounds” (Sokol et al.) to see expected background levels for the given exposure time. If the background in the area of interest is less than 20 electrons, pixel based CTE corrections may be off by a significant amount (or may not work very well). Add post flash to elevate the background to 20 electrons or more in the area of your target or region of interest.
Note that the level of the ACS post-flash is highly spatially variable and the commanded value of flash is the value seen in the central region, and other regions have lower values. See ACS ISR 2014-01 “Post-Flash Capabilities of the Advanced Camera for Surveys Wide Field Channel (ACS/WFC)” (Ogaz et al.) for more details. You should evaluate and assess the need for it based on the anticipated sky background levels and the scientific and technical purposes behind the design of your intended observations. If you have an assigned ACS Contact Scientist, that person may be able to help, or if not, you may contact the ACS Help Desk via email to help@stsci.edu.
To summarize: use of ACS post-flash may be recommended by the ACS ETC in some circumstances where there will be low background in an exposure, especially due to use of very short exposure times or narrow-band filters, etc. (See also ACS ISR 12-04 by Sokol et al.) However, use of this capability should be considered very carefully and may also greatly complicate your data analysis in many situations, due to the highly nonuniform nature and significant variation in the flash level over the ACS/WFC field of view which is documented more fully in ACS ISR 2014-01 (Ogaz et al., 2014). You can also read more about the ACS post-flash in the example and discussion in Section 9.6.6 of the ACS Instrument Handbook. You may also request help from your assigned Contact Scientist, if you have one, or you may request help from the ACS group through the help desk via help@stsci.edu.
11.2.5 Number of Iterations
Enter the number of times this Exposure Specification should be iterated, each with the specified Time_per_Exposure. Note: CR-SPLIT and multiple iterations are mutually exclusive capabilities. If Number_of_Iterations > 1 on an external exposure, CR-SPLIT=NO must be specified.
11.2.6 Time Per Exposure
Enter the exposure time, in seconds, for the Exposure Specification. If Number_of_Iterations = 1, the Time_per_Exposure is divided equally among the CR-SPLIT copies, if any. If Number_of_Iterations > 1, each iteration comprises a single exposure whose duration is Time_per_Exposure.
Note that exposure time for an individual WFC exposure, after any CR-SPLIT is applied, must be an integer multiple of 0.1 second and in the range of 0.5 to 3600 sec. The value 0.6 sec. is not allowed.

HST Cycle 25 Phase II Proposal Instructions > Chapter 11: Advanced Camerafor Surveys (ACS) > 11.2 Mode = ACCUM Config = ACS/WFC

Table of Contents Previous Next Index