ACS Data Handbook v. 9.0
Table of Contents Previous Next Index PDF

ACS Data Handbook > Chapter 3: ACS Calibration Pipeline > 3.2 Pipeline Overview

Pipeline processing is carried out by two separate image processing packages: calacs corrects for instrumental effects to produce calibrated products. AstroDrizzle corrects for geometric distortion, performs cosmic ray rejection based on the individual images of the same scene, and attempts to correct for hot pixels using dithered MAST images.
3.2.1 calacs: Image Calibration
calacs controls the image calibration steps based on the type of images and/or associations:
The task acs2d continues with routine image reductions; MAMA images are dark-subtracted (omitted by default) and flat-fielded. CCD images—single images and images combined with acsrej—are, as appropriate, dark-subtracted, post-flash-subtracted, and flat-fielded.
Calibrated data products from calacs (with suffixes flt.fits/flc.fits, crj.fits/crc.fits, and sfl.fits) are in units of electrons.
calacs standard calibration final products have suffixes flt.fits and crj.fits. When run manually, if desired, calacs also creates temporary intermediate data products, such as those with the suffix blv_tmp.fits.

For WFC images, calacs produces counterpart data files that have undergone pixel-based CTE corrections. The CTE-corrected final data products have suffixes flc.fits and crc.fits, to complement flt.fits and crj.fits files, respectively. When calacs is run manually for WFC data, temporary intermediate data products have the letter "" c"  in the suffix to indicate that it has also been corrected for CTE, such as blc_tmp.fits as the counterpart for blv_tmp.fits.

Beyond calacs, the pipeline also produces two sets of drizzled data for WFC, with suffixes drz.fits and drc.fits. In this document, unless the context is specifically for one or the other, standard and CTE-corrected files mentioned by suffix will appear separated by a " /" for instance, flt.fits/flc.fits.
While intermediate steps in calacs make use of sky subtraction values to perform certain steps, such as in identifying cosmic rays, all data products created by the pipeline will not be sky subtracted.
Calibrated products from the pipeline may still contain some artifacts such as hot pixels, cosmic rays, and, in the case of post-SM4 WFC subarray images, bias striping. To correct for post-SM4 subarray bias striping, after bias subtraction but before the rest of the calibration steps, it is currently necessary to use a standalone Python routine (acs_destripe_plus) outside the calacs package (see Section 4.2.1 and Example 5 in Section 3.5.2). Residual hot pixels and cosmic rays may be rejected from dithered images using AstroDrizzle to process associations created from observations taken with the "POS TARG" or dither "PATTERN" special requirements in Phase II proposals.
calacs and Single Exposures
Each single-exposure raw image undergoes standard detector calibrations in calacs, such as bias subtraction, dark subtraction, and flat-fielding (see Section 3.3) to create a flt.fits image. For full frame WFC images,1 by default, a CTE-corrected image with the suffix flc.fits is also created. This is done regardless of whether those single images will be combined in later calacs steps. Data in the "SCI" (science image) and "ERR" (error image) extensions of a calibrated flt.fits/flc.fits image are in units of electrons, whereas the raw ACS images are in units of counts.
calacs and Combining of Sub-Exposures
Depending on how multiple sub-exposures were executed, calacs has two different ways to combine them.
If CCD images are flagged in an association table as belonging to a "CR-SPLIT" or repeated observations set,2 the following steps are performed by calacs:
The combined image is flat-fielded to create a calibrated image file with suffix crj.fits. For images where CTE-correction is applicable, a CTE-corrected combined image with the suffix crc.fits is also created.
The flt.fits images are summed to create an image with the suffix sfl.fits.
Note that each single exposure image from a "CR-SPLIT" or repeated sub-exposures set will also be calibrated individually to produce a flt.fits/flc.fits image for later use in AstroDrizzle if the header value EXPSCORR="PERFORM" (which is currently the default).
calacs and Dithered Exposures
calacs produces a calibrated flt.fits/flc.fits file for each single-exposure image in an association, including those created from using dither "PATTERN" and "POS TARG" special requirements in the Phase II proposal.
If there were two or more repeated sub-exposures at a pointing, calacs produces a cosmic ray-rejected combined image, crj.fits/crc.fits, for CCD data. For SBC MAMA data, a summed image is created with the suffix sfl.fits.
However, calacs will not combine images from multiple positions within an association (like those from a dither pattern). Later in the pipeline, after calacs processing is completed, flt.fits/flc.fits images will be corrected for geometric distortion and combined, with cosmic ray and hot pixel removal, by AstroDrizzle (crj.fits/crc.fits and sfl.fits files are not used in AstroDrizzle).
Table 3.1: Input and Output Image Suffixes from calacs and AstroDrizzle for Various Observing Modes
Image Suffixes (suffix.fits)
CTE-corrected products only apply to full frame WFC images; capability for CTE-correcting WFC 2K subarrays will be added by August 2014.
SBC MAMA detectors are not sensitive to cosmic rays.
Depends on the image type. For "CR-SPLIT" exposures, calacs creates crj.fits/crc.fits combined images. For repeated MAMA exposures, calacs creates a summed sfl.fits file. However, combined images are not used as input to AstroDrizzle. Only flt.fits/flc.fits files are the primary input to AstroDrizzle; they can also be represented by an association table, if one is available.

3.2.2 AstroDrizzle Processing in the Pipeline
During pipeline processing, calibrated ACS data that belong to an association are corrected for geometric distortion and drizzle-combined with cosmic ray rejection by AstroDrizzle. If the associated images are dithered, they are aligned using the WCS information in their headers before being drizzle-combined. If there is no association table, each single-exposure ACS image is drizzled to correct for geometric distortion.
The resulting drizzled image, in units3 of electrons/second, is written to a file with the suffix drz.fits/drc.fits. (For WFC, data from the two chips are mosaicked together as one image.)
In the pipeline, AstroDrizzle and its related software rely on these reference files:
IDCTAB reference table for a description of the distortion model.
D2IMFILE reference file for filter independent detector pixel grid defects or irregularities in X,Y in each WFC CCD chip, only for WFC images.
NPOLFILE reference file is for the non-polynomial filter dependent part of distortion, for residual distortions not accounted for by the IDCTAB distortion solution coefficients (nor corrected by the D2IMFILE, in the case of WFC images).
Information about geometric distortion from these reference files are stored as SIP header keywords and as FITS extensions in the flt.fits/flc.fits images. Please see ACS ISR 15-06 for more information on the distortion and Section 2.2 for details on the file structure.
The resulting drizzled images from the pipeline may be useful for science as-is, although subsequent manual reprocessing with AstroDrizzle is recommended, and sometimes required, for optimizing the data. For more information, please refer to the DrizzlePac website.
3.2.3 When is MAST Processing not Appropriate?
The goal of the ACS pipeline is to provide data calibrated to a level suitable for initial evaluation and analysis for all users. Observers require a detailed understanding of the calibrations applied to their data and the ability to repeat, often with improved products, the calibration process at their home institutions. There are several occasions when data processed via MAST from the Archive are not ideal, requiring off-line interactive processing:
Running calacs with different reference files than those specified in the image header.
Running calacs with non-default calibration switch values.
Images combined by AstroDrizzle in the pipeline were produced using parameters that are suitable for the widest range of scientific applications (see ACS ISR 17-02 for more details). Some datasets, however, could benefit significantly from manual reprocessing, for instance, by using a different pixel scale or by modifying cosmic ray rejection parameters. The same AstroDrizzle task used in the pipeline is also available to users in AstroConda for off-line processing of flt.fits/flc.fits images retrieved from the Archive. For more information, please refer to DrizzlePac website.
As of August 2014, calacs will also apply CTE corrections to WFC 2K subarray images.
The Phase II proposal's exposure log sheet line parameter "Number_of_Interations" has an integer value greater than 1.
The final drizzled image's unit type is set in the AstroDrizzle task parameter final_units; the choices are cps (counts per second, the default value) or counts. The unit for counts is specified in the image header keyword BUNIT. For ACS images, BUNIT is set to ELECTRONS. Therefore, ACS drizzled images are, by default, in units of electrons/second.

ACS Data Handbook > Chapter 3: ACS Calibration Pipeline > 3.2 Pipeline Overview

Table of Contents Previous Next Index PDF