| Space Telescope Science Institute |
| COS Instrument Handbook |
| help@stsci.edu |
Science-exposure overheads are dominated by the time required to move OSM1 and OSM2 and to read out the on-board memory buffer at the end of each exposure. While the Phase II overheads computed by APT may be less than the values presented below, it is important to plan Phase I proposals using the conservative overheads given below to ensure adequate time for each exposure.The full overhead calculation for science exposures depends upon a number of factors including generic exposure set-ups (which depend on the detector and observing mode), whether an aperture change is required, whether a grating change is required, whether the central wavelength setting for the grating is changed, and the directional sense of any required motion to implement an FP-POS change. Table 9.5 lists these additional overheads.
Table 9.5: Science Exposure Overhead Times
PSA − BOA Change WCS − BOA Change Memory readout2
To estimate the overhead for an exposure, round the desired exposure time up to the next whole second and add the generic exposure setup overhead from Table 9.5. If a grating change has occurred from the previous exposure, add the appropriate values from Table 9.3 and/or Table 9.4. If a central wavelength change is made, add the appropriate value from Table 9.5. If an FP-POS movement is made, add the appropriate value for motion in the preferred direction (toward larger FP-POS) or non-preferred direction. Note that all dispersed-light target-acquisition exposures are obtained with FP-POS=3. For all FUV observations except the G140L 1105 Å setting, both detector segments are powered on by default. To turn one of them off, set SEGMENT to A or B and add the associated overhead. Lastly, add the appropriate detector memory readout overhead.