
Technical Instrument Report CDBS 2005-01A

Assessment and Delivery of

Reference Files

R. I. Diaz-Miller, M. Cracraft

rmiller@stsci.edu, cracraft@stsci.edu

June 4th, 2007

Abstract
This TIR defines the standard procedures for the delivery of calibration pipeline reference and

SYNPHOT data files. It clearly establishes the instrument and OTA teams’ responsibilities and

provides guidelines for testing and verification of reference files. This is a revision to TIR 2005-01.

In this revision, we clarify procedures, update information, and describe new tools created to aid

the instrument teams with the validation of their reference files.

Introduction

The generation of calibration reference files and SYNPHOT data files is currently the

responsibility of the instrument and OTA teams at STScI. As part of this process, standard testing

and assessment of the files need to be performed before they are “delivered” officially to the

INS/CDBS (INS Calibration Data Base System) Team for their ingest into the CDBS, DADS, and

OPUS databases. In order for the reference files to be used by the OTFR pipeline, those files have

to be ingested in the OPUS database, while their ingestion into the Data Archive Distribution

Services (DADS) database allows users to retrieve them from the archive and mirror sites. The

main function of the CDBS database is to allow the selection of the correct reference files for a

specific set of observations. The selection is based on data file keyword values outlined in ICD-47,

located at http://www.stsci.edu/instruments/observatory/cdbs/documents/icd-47 RevF.pdf or

http://www.ess.stsci.edu/projects/distribution/ICD47/ICD-47 RevF.pdf.

The checking and quality assessment of reference files will be performed by the person creating

the files, while the official delivery of the files to the databases is handled by the INS/CDBS Team.

Checking and quality assessment of reference files is required for the following reasons:

• to ensure correct keyword content and syntax

• to ensure correct file structure and format

• to ensure that the files will work properly with the pipeline calibration software

• to verify scientific validity

• to ensure proper documentation of the reference files

Accordingly, we define in this document the standard procedures for checking and assessing the

quality of the reference files. The procedures outlined here should follow the creation of the

reference files, which are assumed to be in ICD-47 format. We first provide an outline of the

steps to be performed, followed by a more detailed description. If errors are encountered while

testing the reference files or SYNPHOT data files, they must be resolved before proceeding to the

next step. Unresolved problems with the CDBS tasks should be referred to the INS/CDBS Team

(cdbs@stsci.edu). The detailed steps and procedures for ingesting reference files into the databases

are described in TIR CDBS 2005-02A.

Summary: Preparation and Assessment of Reference Files

1. Update all the reference files’ headers properly (including header keywords and history

lines).

2. In the case of tables, update the Comment and Pedigree columns

3. Rename files so they contain no capital letters and in the case of SYNPHOT, have no version

number.

4. Run fitsverify on the FITS files.

5. Run the CDBS certify tool on the standard FITS files or the GEIS header files.

6. Perform a detailed quality assessment of the data in the reference files.

7. In the case of table pipeline reference files, make sure that all the necessary rows are present.

8. Test the files using CALXXX or SYNPHOT and ETC.

9. Fill out the delivery template and notify the INS/CDBS Team that the files are ready for

delivery.

Detailed description of the preparation steps

1. Update all the reference files’ headers properly (including header keywords and history lines)

Once the reference files have been created, it is necessary to update the primary headers with

the proper useafter date, pedigree of the file, description, comment keyword, and history lines.

(Header keywords that are instrument specific, like DETECTOR or FILENAME, should be filled in

2

compliance with the formating outlined in the ICD-47 document.) These header keywords are

crucial for the correct selection and documentation of the reference files and can be added using

the IRAF task hedit. The relevant header keywords are: USEAFTER, PEDIGREE, DESCRIP, and

COMMENT. For SYNPHOT data files (also known as throughput tables) three extra keywords have

to be present: INSTRUME, COMPNAME, and DBTABLE. The USEAFTER and PEDIGREE (and INSTRUME

and DBTABLE for SYNPHOT data files) keywords will most likely already exist in the header;

DESCRIP and COMMENT (and COMPNAME for SYNPHOT data files) may need to be “added”. This can

be done by setting the add parameter equal to yes in hedit. Note that the information contained

in the USEAFTER date keyword is used differently by the pipeline and SYNPHOT software. In

order to avoid confusion, each of these cases is discussed independently. Also, if the reference file’s

primary header has information that is not relevant to the reference file itself (e.g., calibration

keywords, observation parameters, calibration switches, etc., of one of the datasets used to create

the file), erase them before delivering the file. Make the primary header short, concise, and clear.

1.1 USEAFTER (in Pipeline Reference Files)

This is the most crucial of all the header keywords in a reference file. It indicates the date

and time after which this file should be used in the calibration of science data. The format for this

keyword is ”Month dd yyyy hh:mm:ss”, where the time entry is optional. For the month, any

valid abbreviation is acceptable (or write out the whole word). The time should be set equal to

00:00:00 for most of the reference files, which is the same as not using a time entry. Exceptions

to this case are for those files, like STIS or ACS bias and dark reference files, that should not

be used across anneal occurrences and therefore the time is set equal to the anneal time. For

example, a reference file that has a useafter date of “Jan 26 2005 05:23:53”, should not be used

to calibrate data taken BEFORE that date and hour. Furthermore, although most reference files

are “back dated” to launch in order to be used for all data, there are cases where more than one

file of the same type and for the same mode exist, but with different USEAFTER dates. Special care

should be taken in deciding the useafter date for those cases; to make sure that they will correctly

supersede outdated reference files or cover the specific date ranges. As a rule of thumb, for those

new reference files that will replace an old reference file, the exact USEAFTER date and time of the

old reference file must be used for the new reference file.

1.2 USEAFTER (for SYNPHOT Data Files)

The USEAFTER keyword in SYNPHOT data files (also known as throughput tables) is also

important for the selection of the correct data files. In this case, however, it is used in a different

way than the USEAFTER date keyword in the pipeline reference files. In particular, the SYNPHOT

software itself does not care about this keyword and it is used only by the CDBS database to

determine when the files were created. This information in turn is used by one of the CDBS tools,

the MKCOMPTAB task, that creates the Master Component Table (TMC table), or “lookup table”.

This task is used by the INS/CDBS Team in the delivery process to recreate the TMC table.

(Note that for the purpose of testing, the TMC table should be edited manually; for example,

3

with the task TEDIT.) In this case, for a particular SYNPHOT data file type, the MKCOMPTAB task

looks into the CDBS database and identifies the files with the most recent USEAFTER dates. The

most recent files are then used to populate the TMC table for each of the SYNPHOT components.

Therefore, the USEAFTER date in the SYNPHOT data files should be populated with the date the

files were created. The format for this keyword is “Month dd yyyy hh:mm:ss”, where the time

entry is optional.

Note that if the CDBS tool MKCOMPTAB finds several versions of a data file of the same type

with the same USEAFTER date, it will use all of them to populate the TMC table and therefore

there will be repeated entries for the same SYNPHOT component. In this case, the order in which

those files appear is important and SYNPHOT will use only the last of those data files listed in

the TMC table.

1.3 PEDIGREE

The header keyword PEDIGREE describes the type of data used to create the reference file:

INFLIGHT, GROUND or DUMMY. If PEDIGREE = INFLIGHT, the whole range of dates of the data used

to create the file should be listed. For example, “INFLIGHT 21/01/2000 26/01/2000”; where the

dates have format dd/mm/yyyy (note the four digit year). If the data in a reference file have

more than one kind of pedigree (e.g., there are rows with pedigree INFLIGHT and GROUND), set

the header keyword PEDIGREE to the one occurring more in the reference file, as only one kind of

pedigree can be used in the header. Also, when working with tables, also make sure to update the

pedigree within the table; i.e. the column pedigree of table reference files for those rows that were

changed/updated. More on this in next section.

1.4 DESCRIP

The DESCRIP (description) keyword should be a concise sentence; one that makes it easy for

users to decipher the type of reference file or the changes being made. This keyword should be

a one-line explanation of why the file is being delivered. For example: DESCRIP = "Reference

superdark created from proposal 7276", provides a simple description of the file. Other

examples are:

DESCRIP = "In-flight low-order flat based on observations of GD 71"

DESCRIP = "Revised sensitivities for first order M modes"

or

DESCRIP = "New blaze function corrections and sensitivities for eschelle modes".

Note that the last two examples summarize changes made to the files. More complete information

will be provided in the HISTORY lines.

4

1.5 COMMENT

In the COMMENT keyword, the names of the creators of the reference file should be entered;

e.g., COMMENT = “Reference file was created by R. Diaz-Miller and P. Goudfrooij.”

Note, however, that some FITS reference files have a default COMMENT section that refers to

the FITS file format and which cannot be modified or erased. The FITS default COMMENT section

is different than the COMMENT section (header keyword) referred to here. The way to distinguish

between these two is by their format. In the case of the CDBS required COMMENT line, the word

COMMENT is followed by an “=”, as in the example above and should list the people who created the

file. If this does not exist in the current FITS file, it can be added in one of two ways.

Using IRAF, you can first delete the default COMMENT lines that appear in the file and

then add the new one. The commands needed to do this are:

cl> thedit file.fits[0] comment delete+

cl> hedit file.fits[0] comment "= ’comment string’" add+

Note that the ”=” should be added at the beginning, or a comment section line would be

added rather than the header keyword you were trying to create. The other way to add the header

keyword is by using Pyraf as follows.

In Pyraf:

import pyfits

hdulist=pyfits.open(myfile.fits,mode=update)

hdulist[0].header.add comment(= comment string,before=origin)

hdulist.flush()

This will add a header keyword COMMENT leaving intact the FITS comment section already in the

file.

1.6 DBTABLE (for SYNPHOT data files only)

The DBTABLE keyword should be set to “CRTHROUGHPUT” for all SYNPHOT throughput

files.

1.7 COMPNAME (for SYNPHOT data files only)

The COMPNAME keyword should have the SYNPHOT name of the component to which the

delivered reference file applies. The COMPNAME keyword in the HEADER of the file has to match

the TMG and TMC COMPONENT name. Check previously delivered files to make sure that you are

using the right value. For some files, this is the first part of the name of the file you are delivering.

For example, the data file “stis a2d8 new syn.fits”, has COMPNAME stis_a2d8. The important

thing is that there is agreement between the COMPNAME header keyword and the COMPNAME columns

in the TMC and TMG tables.

5

1.8 INSTRUME (for SYNPHOT data files only)

The INSTRUME (instrument) keyword should have the instrument to which the SYNPHOT

data files apply. The instrument name should be in lowercase.

1.9 HISTORY

The HISTORY lines can be added to the FITS file header in many different ways, and only

some of them will be mentioned here. In the case of WFPC2 GEIS files, the header is an ASCII

file and it can be edited using any editor.

In the case of FITS files, one way to add the history section is via the IRAF task called

stfhistory in the stsdas.toolbox.headers package. This task loads an ASCII file, given in

the parameter “text,” into your reference file header as history lines, pre-appending the word

HISTORY to each line. For example:

PACKAGE = headers

TASK = stfhistory

input = reference file.fits[0] Image template

text = @historyFile.ascii History text

(verbose= yes) Verbose message switch

(mode = al)

will input the text contained in the file ‘‘historyFile.ascii’’ as HISTORY lines in the header [0]

of the reference file reference file.fits. Make sure that in this ASCII file each line has 62 characters

or less, otherwise the stfhistory task will break the text as needed and you will end up with a

HISTORY section that has rows of different length.

The following information is required in the HISTORY lines:

1. A complete but concise description of the process used to create the reference file. Be specific

–note what software was used and if it is available to the GOs or only internally.

2. Include in the description any pertinent numbers that others may find useful, e.g.- how many

crsplits or repeat observations were involved to create the image, the total exposure time,

the kind of software used to create the reference file, or the value above which hot pixels

were updated.

3. When possible, include relevant ISR/TIR numbers.

4. A listing of what raw datasets went into the creation of the reference file.

5. No names of people involved in the creation of the reference file should be included in the

HISTORY lines, these names should be mentioned in the COMMENT keyword. This is because

the COMMENT keyword does not show up in StarView.

6

Keep in mind that history lines are very important because they not only document what

we did to create the reference file, but they serve to inform general observers who use the file as

well. In some cases it can be useful to look at the headers of previously delivered reference files

to see what was placed in their history lines. However, in those cases where a file has changed

appreciably since the last delivery (i.e., if most of the rows have changed), rather than repeat

history lines and produce a lengthly output that is hard to follow, simply reference the last

appropriate reference file and TIR/ISR number in the history section of the new file. An example

history file looks something like this:

Created on July 26, 1999, using the

cl script ‘‘weekdark’’, which is available in the

stis package within STSDAS.

This superdark image is a combination of 2 images.

The first is a ‘‘baseline dark’’ image which is a

(typically) monthly average of (cosmic-ray-rejected)

dark files (in this case an average of 38 darks). The

second image is made locally within the ‘‘weekdark’’

script from 14 darks that are taken from Proposals

7948/7949/8408/8437 ‘‘Dark and Bias Monitor’’.

These gain 1 darks are combined together (cosmic

rays are rejected in the combination) using calstis, and

normalized to a dark time of 1 second. After that, hot

pixels in that normalized dark are updated into the

baseline dark. These hot pixels have a value higher than

(baseline dark current + 5 sigma of the new dark). Hot

pixels have been updated above a level of 0.01723591

electrons/second for this particular dark. The pixels hotter

than 0.1 electron/sec in this dark are being assigned a DQ

value of 16. Previously hot pixels that have fully annealed

out between the observing dates of the baseline and the

new dark are being assigned a value equal to that in

a median-filtered (kernel = 2x2 pixels) version of the

baseline dark.

The following input dark files were used:

o4wi7agxq

o4wi7bh5q

o4wi7cnyq

o4wi7doiq

o4wi7ew1q

If you should happen to make a mistake in your history lines and only notice it after you

have added it to your primary header with stfhistory, you can “undo” what you did with a

7

task called eheader or tupar. The IRAF stsdas.toolbox.eheader task will allow you to edit

the primary image header using an interactive text editor. (It might work only with “vi”.) After

editing is complete, the changes are saved back to the original file. For example, to erase lines

in “vi” go to the line you want to erase using the arrow keys and then type “dd”. To erase

a word, type “dw”; to erase one character, type “x”. To insert text, type “i” and then start

inserting your text; to escape insertion mode, use the < ESC > key. To save your changes, type

“< ESC >: wq < return >”. This last command will take you out of the “vi” editor. Notice that

the eheader task also can be used to add history lines. In this case you should remember to add

the word “HISTORY ” (leave four spaces after this word) at the beginning of the line. To erase

lines with tupar simply tupar the file’s primary header: tupar reference file.fits[0]. At the colon

prompt type “l” to list the header. Once you see what line numbers you would like to delete type:

“d #” where # is the line number. Typing “e” will exit and save the file; typing “q” will exit

without saving the changes you just made.

Special considerations for WFPC2 GEIS files

In the case of GEIS files (e.g., WFPC2 reference files), make sure that the headers are FITS

compliant, even if those are ASCII files only. For this, replace tabs with spaces and double

quotations with single quotations; this is because double quotations and tabs are not FITS

compliant. In the case of single quotations, make sure that enough empty spaces are left between

the single quotes by matching the format of the rest of the rows in the header file. Following

these guidelines will make sure that all the header keywords are FITS compliant when the files are

converted to “waiver” FITS files.

2. In the case of tables, update the Comment and Pedigree columns

For most of the pipelines, information regarding the reference files used for the calibration

of the data is provided in the trailer files. The usual information provided in the trailer files are

the name of the reference file and information on their pedigree and comment or description. In

the case of image reference files, and some of the table reference files, the comment and pedigree

that appear in the trailer file are extracted from the header keywords of the file. In the case of

table reference files that have a “pedigree” and/or “comment” column, the pedigree and comment

section of the trailer file are extracted from the particular row used. Therefore, it is recommended

to pay particular attention to the content of these two columns when updating these table

reference files. It is important to make sure that the information in these columns is accurate (in

the case of “pedigree”) and provides a clear description of the data contained in the file and that

is relevant for the user to know when reviewing the trailer files.

8

3. Rename files so they contain no capital letters or version number.

CDBS cannot process files with names containing capital letters. Such files should be renamed

to contain only lower case letters. Also, in the case of SYNPHOT data files, rename the files

to contain no version numbers; we suggest replacing the version number by the word “new”.

For example, replace the file name “stis g750l 007 syn.fits” with “stis g750l new syn.fits”. In the

end, this will facilitate the testing process and the handling of the SYNPHOT data files by the

INS/CDBS Team.

4. Verify that the files are in standard FITS format (not applicable to GEIS files)

FITS reference files that are not in standard FITS format cannot be ingested into the

databases. To verify them in the smalls.stsci.edu domain, run the fitsverify tool on the files:

fitsverify filename.fits

Wild-cards may be used for filenames (filename.fits in this example can be replaced by *.fits).

In the Science Cluster, uses instead the farris_fitsverify tool. This is because in here the

fitsverify script was updated recently to fitsverify version 4.13 (which is compliant with the

GSFC Heasarc version, distributed by Bill Pence). This might not work for some of the old format

FITS files. If possible, correct the FITS files to be compliant with the new fitsverify version;

however, the CDBS software requires only that these are compliant with the old fitsverify

version (which corresponds to the Allen Farris version). This old version can be accessed in the

STScI Science cluster with the command line :

farris fitsverify filename.fits

(Also, note that in the smalls.stsci.edu domain the fitsverify and farris_fitsverify

versions are the same.) The output of these two versions will differ considerably. A sample output

for the fitsverify (v4.13) for the FITS binary table “p9r19206o tds.fits” looks like this:

fitsverify 4.13 (CFITSIO V2.510)

File: p9r19206o tds.fits

2 Header-Data Units in this file.

=================== HDU 1: Primary Array ===================

49 header keywords

Null data array; NAXIS = 0

9

=================== HDU 2: BINARY Table ====================

48 header keywords

TDS(1) (10 columns x 6 rows)

Col# Name (Units) Format

1 OPT ELEM 12A

2 WAVELENGTH (angstrom 60D

3 TIME (MJD) 12D

4 SLOPE (percent per y 720D

5 NWL 1I

6 NT 1I

7 REFTEMP (K) 1D

8 TEMPSENS (percent /K 60D

9 PEDIGREE 67A

10 DESCRIP 67A

++++++++++++++++++++++ Error Summary ++++++++++++++++++++++

HDU# Name (version) Type Warnings Errors

1 Primary Array 0 0

2 TDS (1) Binary Table 0 0

*** Verification found 0 warning(s) and 0 error(s). ****

On the other hand, output from the farris fitsverify looks like this:

===

FITS Verification for file: lbq1211ao bia.fits

===

Summary contents of FITS file: lbq1211ao bia.fits

0: Primary Array (SHORT)

0 bytes, 108 header lines, 3 FITS blocks

1: Image Extension (FLOAT) [IMAGE,SCI,1] 2 dims [1024,1024]

4194304 bytes, 36 header lines, 1458 FITS blocks

2: Image Extension (FLOAT) [IMAGE,ERR,1] 2 dims [1024,10w24]

4194304 bytes, 36 header lines, 1458 FITS blocks

3: Image Extension (SHORT) [IMAGE,DQ,1] 2 dims [1024,1024]

2097152 bytes, 36 header lines, 730 FITS blocks

No special records.

===

10

No problems were encountered.

Examples of problems encountered with the files in FITS verification include:

• extra spaces in keyword fields

• incorrect format for DATE keyword field (18/12/00 instead of the correct format Dec. 18,

2000)

• missing PCOUNT and GCOUNT keywords in extension headers

Note that this command checks for standard FITS header keywords and does not report any

missing instrument-dependent header keywords; i.e., those that give the information necessary to

define the observing mode to which these files apply and that should be present in all reference

files. A complete list of the standard FITS header keywords can be found in ICD-47.

5. Run the CDBS certify tool on the standard FITS or GEIS header files

The CDBS certify tool performs additional checking on the syntax and keyword values in

the standard FITS files or the GEIS header files (WFPC2 uses GEIS files), ensuring adherence

to ICD-47 specifications for each type of reference file. Instrument specific header keywords and

columns (in a table file) that are necessary for the correct selection of a reference file will be

checked. This tool is run by typing the following command in a UNIX shell.

certify filename

Wildcards may be used for filenames, e.g., *.fits or *.*h. Note also that in order to use the certify

script in the UNIX shell line, the path to the CDBS tools (/data/cdbs1/tools/bin/) has to be defined

in your private directory PATH (in the .setenv file), otherwise the whole path to the script has to be

used. The certify tool does not check all the keyword syntax and values in the reference file, but

only those that are used specifically in CDBS, OPUS, and DADS systems for selecting and tracking

the reference files. More detailed documentation on the certify task is available in postscript

format on the CDBS web page (http://www.stsci.edu/hst/observatory/cdbs/documents/). A

complete list of the standard instrument-dependent header keywords can be found in ICD-47.

The required keywords are specified to certify via CDBS template files. There is one template

file for each reference file type and these are located in the CDBS working areas of the STScI

science cluster and the smalls.stsci.edu domain. A sample of the template file for the STIS

PHT reference file looks like this:

Template file used by certify to check reference files

Some fields may be abbreviated to their first character:

#

keytype = (Header|Group|Column)

datatype = (Integer|Real|Logical|Double|Character)

11

presence = (Optional|Required)

#

NAME KEYTYPE DATATYPE PRESENCE VALUES

#—————————————————————————–

INSTRUME H C R STIS

FILETYPE H C R ”PHOTOMETRIC CONVERSION TABLE”

DETECTOR H C R CCD,NUV-MAMA,FUV-MAMA

OBSTYPE H C R IMAGING,SPECTROSCOPIC

OPT ELEM C C R G140L,G140M,E140M,E140H,G230L,\

G230M,E230M,E230H,PRISM,G230LB,G230MB,G430L,G430M,G750L,G750M,\

MIRCUV,MIRFUV,MIRNUV,MIRVIS,X140H,X140M,X230H,X230M,N/A

CENWAVE H I R

1173,1200,1218,1222,1234,1271,1272,\

1307,1321,1343,1371,1380,1387,1400,1416,1420,1425,1453,1470,1489,\

1518,1526,1540,1550,1562,1567,1575,1598,1616,1640,1665,1687,1713,1714,\

1763,1769,1813,1851,1854,1863,1884,1913,1933,1963,1978,1995,2013,\

2014,2063,2095,2113,2124,2125,2135,2163,2176,2213,2257,2263,2269,\

2276,2313,2338,2363,2375,2376,2413,2415,2416,2419,2463,2499,2513,\

2557,2561,2563,2579,2600,2613,2659,2663,2697,2707,2713,2739,2762,\

2794,2800,2812,2818,2828,2836,2862,2898,2912,2962,2976,2977,3012,\

3055,3115,3165,3305,3423,3680,3843,3936,4194,4300,4451,4706,4781,\

4961,5093,5216,5471,5734,6094,6252,6581,6768,7283,7751,7795,8311,\

8561,8825,8975,9286,9336,9806,9851,10363,\

1232,1269,1305,1341,1378,1414,1451,1487,1523,1560,1587,1760,\

2010,2261,2511,2760,3010,1975,2703,-1,-999

USEAFTER H C R &SYBDATE

PEDIGREE C C R &PEDIGREE

DESCRIP C C R

A sample of the output of certify for a file with no errors:

== Checking mama2 PFL.fits ==

while the output for a file that has a problem would be:

== Checking mama2 PFL.fits ==

Could not match keywords in header (mama2 PFL.fits)

Cannot determine reference file type (mama2 PFL.fits)

If you encounter a problem at this stage, first check to see if there are any obvious problems with

the file header keywords or keyword values. The list of required and valid values for the header

keywords can be found as well in ICD-47. If this check does not reveal the source of the error,

contact the INS/CDBS Team.

12

6. Perform a detailed quality assessment of the data in the reference files.

The integrity of the calibration reference files is critical for the production of high-quality

science results. It is therefore important that before delivering them to the pipeline or SYNPHOT

database, each Instrument group thoroughly test and validate them to the best of their ability. In

addition to checking for proper structure and syntax, checking the data is essential.

For those cases where automatic checking has not been implemented, there are many IRAF

tasks that can be used to examine files. For headers: eheader, imhead, hedit, tlcol; for data:

listpix, mstat, tread, tstat, display. Consistency is strongly recommended for the testing

and integrity checking of the reference files. Some of the questions that might be answered before

delivering the files could be: Do the new files look like the old ones? If not, why? Have the column

PEDIGREE values been updated according to the changes made in the rows? Do the comments

in the updated row have the correct information? Are the error columns and error extension

consistent with the data? Keep careful notes on how you determined that the new reference file

was good. For image reference files, it is good to run the IRAF task imstat on the file and

determine if the values are reasonable in all extensions: science, error and data quality. Often,

plotting or displaying the file will reveal obvious problems that otherwise might be missed.

7. In the case of table pipeline reference files, make sure that all the necessary rows are present.

This step is necessary to ensure that when the table reference file was changed, all of the

new rows were added and that needed rows were not accidentally deleted. A script called

compare table.pro was developed for this testing. This script compares two FITS reference file

tables, looking for missing elements by checking the differences in each row between the new and

old reference files. The comparison elements are limited to those specified in the COLUMNS

parameter, which must be specified for the program to run. The parameter COLUMNS is an

n-element array of strings with the names of the columns to compare within the table. When

a combination is missing in either the old or new file, the procedure will flag it in the standard

output. If the parameter SAVEFILE is set to a value other than 0, the output of this procedure

will be saved in a file called ”compare table.out”. The calling sequence for the procedure is shown

below.

idl>compare table,’my new file.fits’,’old reference file.fits’,$

COLUMNS=[’ccdchip’,’filter1’,’filter2’],SAVEFILE=1

where ’my new file.fits’ is the name of the new reference file, ’old reference file.fits’ is the old

reference file, ’ccdchip, filter1, and filter2’ are the columns to be compared, and the optional

SAVEFILE parameter is set to a value other than 0 to have the output written to a file called

”compare table.out”.

Any changes should be examined to be sure they were the intended changes. These

differences should be listed in line 11a of the delivery form when the files are delivered

to CDBS. This script can be found in the Science Cluster in the STScI IDL area

13

and in /data/garnet2/idl/stsci/. More information on this procedure is located at

http://www.stsci.edu/hst/observatory/cdbs/deliveries/compare_table_pro.

8. Test the reference files using CALXXX or SYNPHOT and ETC.

CALXXX must be used to calibrate actual data with the reference files being readied for

delivery. The highest level check should verify that the appropriate stages of CALXXX do not

crash and that the calibrated data makes sense. Make sure that the proper CALXXX switches

are set to PERFORM so the files being tested are actually used. Real datasets should be calibrated

with both the new reference file and the old reference file, and the differences understood and

thoroughly documented. Even in the case of simple changes to the file, the deliverer should make

sure that CALXXX runs using these files.

SYNPHOT data files, on the other hand, have to be tested using the SYNPHOT and ETC

software (two independent tests using different tools). The ETC software relies heavily on the

SYNPHOT package to predict count rates and S/N values via calls to SYNPHOT tasks. However,

the results that the ETC produces also depend on calculations performed by the ETC software

itself. In order to maintain the integrity of both systems, changes made in SYNPHOT data files

have to be tested against the ETC software. The ETC/APT project created a testing environment

where the Instruments and OTA teams can test new SYNPHOT files. In this environment, the

deliverer can identify those ETC modes that are affected by the changes made to the SYNPHOT

data file(s) and make sure that the differences between the currently used files and those being

tested are the expected ones. In order to consistently verify the integrity of the system, we

recommend maintaining a complete ETC test suite that cover most of the cases where the new

SYNPHOT data file will affect the ETCs output. If the current test suite is not complete, please

contact the INS/CDBS Team to help you update it.

8.1 Testing the file in SYNPHOT

The testing under SYNPHOT is accomplished using the stsdas.hst_calib.synphot package in

IRAF. Here, it is assumed that the files are being tested in the STScI Science cluster. If working

on a different platform, the paths to the directories mentioned below will change.

1. The first step of this process is to create a dummy “Master Component Table” (TMC

table) that points to the data files you are delivering. For this, make a copy of the most

current TMC table in a working directory. All the TMC tables are located in the directory

/data/cdbs2/mtab/ in the STScI science cluster. Although there are several TMC tables

in this directory, the most up to date is listed last. After copying this file to the working

directory, rename it using a naming convention that puts it last in an alphabetically sorted

list of the mtab/ directory. This is because this file will also be used for the test in the ETC

environment, for which this naming convention is important (see next section).

2. Now edit the row(s) for the COMPONENT(s) associated with the data file(s) you are

14

delivering. If there is more than one row in this table for the same COMPONENT name,

make sure you edit only the last one. Change the FILENAME column of this row to point to

the SYNPHOT data file being delivered. You can edit this file via the IRAF task tedit.

Note, however, that there is a required 68 characters limit for this column. In order to

prevent a problem with long path names, as well as for the use of this file for the testing with

the ETC software, we strongly recommend defining a logical IRAF variable for this directory.

In the ETC test environment this file has to be called “comptest”, so we recommend using

this name here as well. In this case the FILENAME column value will have the following

format:

sy> comptest$rootname new syn.fits

In order to test the files with SYNPHOT the IRAF logical variable “comptest” also has to

be defined. This can be accomplished by typing in the IRAF command line:

sy> set comptest = “/data/mypath/myworkingdir”

3. Now modify the parameter “cmptbl” in the stsdas.hst_calib.synphot.refdata task with

the name of the dummy TMC table using the same IRAF logical variable name to point to

the working directory.

4. If you are delivering a “Master Graph Table” (TMG table) together with your new

SYNPHOT data file(s), you also have to modify the parameter “grtbl” of the refdata task.

This is done in the same way as for the TMC table.

5. Now run the SYNPHOT task that will use this data file. Note that if your also delivering

the ”HST Thermal Component Table (TMT table), this cannot be tested at this point. This

will be possible when testing the ETCs (see section 8.2)

6. Make sure that you used the correct SYNPHOT data files by running the task

stsdas.hst_calib.synphot.showfiles.

7. If you are delivering a new TMG file, run the task synphot.grafcheck to validate the

structure of the graph table. (e.g. grafcheck qc80137jm_tmg.fits)

For more information on the SYNPHOT package and tasks, refer to the Synphot User’s Guide

(http://www.stsci.edu/resources/software hardware/stsdas/synphot/SynphotManual.pdf).

8.2 Testing the file with ETC

The test of SYNPHOT data files against the ETCs has to be done in "panthro.stsci.edu",

which is part of the Linux cluster. In order to be able to run the ETC regression test in this

computer, some environment variables and libraries need to be set in the user’s account.

• First, it is necessary to set the environmental variables that give the ANT and JAVA

directory paths. This can be accomplished by adding the following lines to the .setenv file:

15

setenv ANT HOME /usr/local/apache-ant-1.6.5

setenv JAVA HOME /usr/java/jdk1.5.0 02

setenv PATH .:/usr/local/apache-ant-1.6.5/bin:/usr/java/jdk1.5.0 02/bin:’binpath -sh’:${PATH}

• In the HOME directory, there must exist a directory called .ant/lib/ (note that the directory

name starts with a period), and it must contain the file junit.jar. This file can be found

in /panthro/data1/junit3.8.1/ directory.

Once the account is set up properly the test can be run, but before we go into this, lets first

talk a little about the ETC test area. The area to run the test for the INS groups is set in a special

directory: /panthro/data1/insTest/. In this directory resides all the executables, test suite,

and reference runs needed for the test. Nothing in this directory has to be changed; however, it

is necessary to be in this directory in order to run the test script. There are several scripts that

run the regression test for each of the instruments (ACS, NICMOS, STIS) as well as generate the

baseline run against which the new files will be compared. Both of these test look to the same

test suite, the main difference is that the baseline run just generates the ETC output files, while

the regression test additionally makes a comparison between the new ETC run and that of the

baseline run. Since we want to make sure that the only differences we see are due to the files we

are testing, we recommend to first run the script that generates the baseline test run. With this

in mind the chronological steps for the ETC test is as follow.

1. Run the baseline generation. There is one script per instrument:

Table 1: ETC test scripts

Instrument Generate Baseline Make Comparison

script script

ACS acsGen acsCheck

NICMOS nicmosGen nicmosCheck

STIS stisGen stisCheck

All insGen insCheck

For example, to run the NICMOS script type

panthro> ./nicmosGen

This will generate the file etc.nicmosGen.out in your home directory. This file contains the

output of the ETC’s run. In the above table, the script insGen will run the script for all the

instruments at the same time.

2. Now, you have to set up the system to see the new SYNPHOT files(s) being tested.

First you should copy them to the directory /panthro/data1/insTest/comptest/

in panthro.stsci.edu. Note that all the current SYNPHOT data files and

master tables that are used for all INS/ETC test runs are located in the directory

/panthro/data1/cdbsTest/comp/; however, the INS/ETC testing environment will also

look for files in the /panthro/data1/insTest/comptest/ directory, which is called through

the logical variable “comptest” mentioned in point two of section 8.1.

16

3. In order to use the new SYNPHOT data file(s) in the INS/ETC environment test, a dummy

TMC table is also needed. If the TMC table was already modified using the guidelines

outlined in points one and two of section 8.1 above, then continue with the next step. If not,

• create a dummy TMC table using the guidelines outlined in step one of section 8.1,

making sure that the modifications to this dummy TMC table are done in a working

directory and not in the mtab/ directory. In the case of panthro.stsci.edu the TMC

tables are located in the /panthro/data1/cdbsTest/mtab/.

• the dummy TMC table should be renamed using a naming convention that makes this

file the last in an alphabetically sorted list of the mtab/ directory. This is because,

given the list of TMC tables in /panthro/data1/cdbsTest/mtab/, SYNPHOT sorts

them alphabetically by name and uses only the last file in the list.

• Modify the TMC table using the guidelines outlined in step two of section 8.1, making

sure that the FILENAME path has the format comptab$rootname_new_syn.fits; this is,

the filenames are preceded by the logical comptest$. In this case, however, it is not

necessary to set this logical variable within IRAF.

• If you are also delivering a TMT table with the Synphot Throughput tables, you

have to modify this file using the same guidelines described in step two of section

8.1 for the TMC table. This is because the TMT file provides, in the column

FILENAME, with the path to the thermal libraries. The format for this column is

crnicmoscomp$nic2_edge_001_th.fits; this is, the filenames are preceded by the

logical crnicmoscompt$. In this case, however, it is not necessary to set this logical

variable within IRAF. Note that once the test is done, the FILENAME entries modified

according to step two of section 8.1 have to be renamed to their original logical

crnicmoscomp$. This is because this file is not touched by the INS/CDBS Team, and

delivered as is. Once this is done, rename this file to a name that makes it to appear

last when sorting alphabetically all TMT files.

• If you are also delivering a TMG table, rename it to a name that makes it last when all

the TMG tables in the panthro.stsci.edu mtab\/ directory are alphabetically sorted.

4. For the INS/ETC test, the dummy TMC table (and the TMG and TMT tables, if applicable)

should be temporarily placed in the /panthro1/data1/cdbsTest/mtab/ directory. (Once

the test is done, this dummy table(s) has to be deleted from the mtab/ directory).

5. If you are delivering a new TMT table. We recommend to test it in SYNPHOT now. This is

because it is in this computer where the dummy/new TMT table can be copied to the mtab

directory and therefore it will be picked up by SYNPHOT.

6. Now we are ready to run the comparison test. Table 1 column 3 lists the scripts you should

use. For example, for NICMOS the command line is:

panthro> ./nicmosCheck &

If using the script that does the comparison for all the instruments at the same time, it will

take about 1 hour to run; for individual instrument it will take about 20 minutes. These

17

scripts will produce a file called etc.xxxxCheck.out in the home directory; where xxxx is

the instrument name. This file contains a list of the test suite input parameters and the

differences found between the current run and the reference run. The information in the

output file can be divided in two parts. The first half of the output file provides information

on the input parameters for the test cases used; the second half contains the differences

found for each of the test cases. To see the output of the test open the file in your favorite

editor and go to the end of the file. From the end of the file, scroll up, if no differences are

found, the output looks something like this:

[junit] NICIMAG844 ----------------

[junit] NICIMAG845 ----------------

[junit] NICIMAG846 ----------------

[junit] NICIMAG847 ----------------

[junit] NICIMAG848 ----------------

[junit] NICIMAG849 ----------------

Here, the dashes indicate that the test cases #844 to #849 for NICMOS IMAGING mode

have no differences from the reference run cases. If there are differences these will appear as

follows:

[junit] NICIMAG1483 ----------------

[junit] Time = 9.478665205037517; reference = 9.733099656333973

***** FAIL ******

[junit] TotalDarkCurrent = 2.8435996745057497; reference=2.9199300129277814

***** FAIL ******

[junit] TotalRate = 27.236754972300826; reference = 26.568083026796238

***** FAIL ******

[junit] TotalESZLCounts = 10.81022631694853; reference = 11.100403672287712

***** FAIL ******

[junit] TotalThermalCounts = 9.488143870242554E-4; reference =

9.742832755990306E-4

***** FAIL ******

[junit] SourceRate = 44.68496704101562; reference = 43.52667999267579

***** FAIL ******

where NICIMAG1483 indicates that the test case #1483 corresponds to an NICMOS

imaging ETC mode. The differences listed here are for the Time, TotalDarkCurrent,

TotalRate, TotalESZLCount, TotalThermalCounts, SourceRate parameters, where the

values derived from the reference run are indicated as reference. It is imperative to make

sure that all the reported differences agree with the changes made to the new SYNPHOT

data file(s). Further information on the output of this run can be found in the first part of

this output file. In particular, provides the output of the SYNPHOT task countrate as well

as that of the ETC, which contains more parameters than those compared.

7. Once the real differences are understood, the test is completed and the new SYNPHOT data

18

file(s) can be delivered. Send, along with the delivery form, the location of the ./xxxxCheck

run, documentation on the differences found, and appropriate explanation on how these

differences relate to the new delivered SYNPHOT data file(s). This information is needed

by the INS/CDBS Team to assess compliance with CDBS guidelines and keep the INS/ETC

testing environment up to date.

8. If you are also delivering a TMT table to rename the changed rows to their original logical

crnicmoscomp$. This is because this file is not touched by the INS/CDBS Team, and will

be delivered as is.

9. Remember that after the test is completed, the dummy TMC table (also the TMG and

TMT tables if applicable) has to be erased from the mtab/ directory; this will prevent any

confusion for future testing of SYNPHOT data files.

More details on the reference runs or on how the SYNPHOT/ETC test works can be found in

Appendix A of this document. If considered necessary, and for the purpose of testing SYNPHOT

data files in the ETC environment, changes to the current test cases or parameter list can be

made. Also, new cases can be implemented. For any changes, please contact the INS/CDBS Team.

Later on, we will provide the necessary documentation on the procedures to follow in these cases.

9. Fill out and e-mail the delivery template.

When all of the above steps have been completed with no errors, the reference files are ready

for delivery. Fill out the delivery template (shown below) and send it to the INS/CDBS Team

(cdbs@stsci.edu). This template, besides helping the INS/CDBS Team to correctly deliver the

files to the Data Management Systems, can be used as a check list for all the steps indicated

above. Make sure that the files and directory where the files are located are accessible by

anybody. The delivery template can also be found in the INS/CDBS web page under Delivery

Notification Template (http://www.stsci.edu/hst/observatory/cdbs/deliveries/delivery form.html)

and contains the following information:

1- Name of deliverer:

(other e-mail addresses)

2- Date of delivery:

3- Instrument:

4- Type of file (bias,pht,etc.):

5- History section in header [0] complete? (yes/no):

6- USEAFTER, PEDIGREE, DESCRIP, and COMMENT have been checked? (yes/no)

7- CDBS Verification complete? (fitsverify, certify,etc.):

8- Should these files be ingested in the OPUS, DADS and CDBS databases? (if not

indicate clearly which ones)

9- Files run through CALXXX or SYNPHOT? (yes/no):

10- Does it replace an old reference file? (yes/no):

10a- If yes, which one?

11- What is the level of change of the file? (e.g. compared to old file it

19

could be: SEVERE, MODERATE, TRIVIAL, 1%, 5% etc.):

11a- If files are tables with information about different observing modes, please

indicate exactly which rows have changed.

12- Description of how the files were ‘‘tested’’ for correctness:

13- Additional considerations:

14- Disk location and name of files:

In this template, in the field “(other e-mail addresses)” you should provide all the e-mail

addresses of people or mailing lists that should be notified of any problem or success of the delivery.

The field “Date of delivery” should have the date when you deliver the file to the INS/CDBS

Team. In question number five, regarding the completion of the history section, you should put

“yes” only when you have made sure that the history section of the file describes the changes made

to the file or explains how the values in the file were derived. If you deliver the file with answer

“no”, we might have to contact you again to make sure this section gets filled properly. Although

most of the reference files are usually delivered to the OPUS, DADS, and CDBS databases, there

could be cases when teams choose not to do so; indicate this in question number eight. In question

ten, we want to confirm that any delivered reference files correctly replace, when applicable, other

files currently in the system. It would be helpful for us to know the name of the file that will be

replaced.

In order to properly populate the databases, we also need to know the level of change of

the delivered files compared to old files or if it is a new file. This information should be given in

question 11. If the file is a new reference file or it covers a range of dates not covered previously,

the level of change should be set to SEVERE or 100%. Another case when it should be considered

as SEVERE is when the change warrants recalibration of the data. If the changes will have a

moderate impact in the results of the calibration, or just make them better but do not warrant

recalibration, then the change is MODERATE. Also, you could specify the percent change; for

example, for the throughputs or images. If the changes made to the file were to correct minor

mistakes only and they will not impact or will have negligible impact on the calibrated products,

the change level is considered TRIVIAL.

Note that in the case of tables we will need more detailed information on which rows changed.

This is in particular important for tables that contain information about several observing modes.

For these, we need to know which datasets will be affected by the delivery; so the mirror sites,

and the HLA (in the near future), can identify with confidence which particular datasets will need

recalibration. For these cases, please let us know in detail which rows were affected by this level of

change. You can determine which rows were changed by running the script ’compare table.pro’

discussed in section 7 above. The script is located in the Science Cluster in the STScI IDL area.

If you do not have that set in your IDL PATH, you can also find a copy of the procedure in

/data/garnet2/idl/stsci/. This list of changed rows should be provided in line ’11a’ in the

delivery form. In the case of throughput tables (e.g. SYNPHOT files) or tables that apply for all

the observing modes we do not need to know the particular rows changed.

We also need information on how the files were “tested” for correctness. In question 12,

briefly describe which kind of test you performed to assess the scientific correctness of the files.

For example: “Verified no change for first order modes when compared to previously ingested

20

reference file. Calstis ignores this file for echelle and imaging modes.” or “All extensions examined

with imstat to count number and size of hot pixels. Run through calstis with data sets from test

suite to ensure that changes in calibrated output were minimal as expected.” In question 13,

describe any special needs associated with the delivery. Is the installation meant to be coincident

with a specific OPUS build or are there other timing requirements or urgency? Note that the

INS/CDBS Team makes every effort to deliver your files to OPUS within 24 hours of receiving the

delivery form, and will contact you if this schedule cannot be met. Finally, in question 14, list the

location and name of files. Make sure that the files are readable by anybody so we can get a copy

of them . List all the reference files that are being delivered. For example,

-rw-r--r-- 2 acsref 10532160 Mar 24 23:13 grp03 hrc rdrk.fits

-rw-r--r-- 2 acsref 10532160 Mar 24 23:13 grp04 hrc rdrk.fits

-rw-r--r-- 2 acsref 10532160 Mar 24 23:13 grp05 hrc rdrk.fits

-rw-r--r-- 2 acsref 10532160 Mar 24 23:13 grp06 hrc rdrk.fits

-rw-r--r-- 2 acsref 10532160 Mar 24 23:13 grp07 hrc rdrk.fits

-rw-r--r-- 2 acsref 10532160 Mar 24 23:13 grp08 hrc rdrk.fits

-rw-r--r-- 2 acsref 10532160 Mar 24 23:13 grp09 hrc rdrk.fits

Mailing the form to the INS/CDBS Team concludes the reference file creator/tester work.

Once the files are in the system, the person delivering the file will be notified.

Acknowledgements

We would like to thank M. Lallo, E. Barker and H. McLaughlin for their comments and suggestions.

Their input was important to make this document more clear and complete.

References

C. Cox & C. Tullos CDBS 1998, “Delivering Calibration Reference Files”

R. Diaz-Miller, STIS TIR 2003-01, “Assessment and Delivery of Spectrographs Calibration

Reference Files”

Laidler et al, 2005, “Synphot User′s Guide”, Version 5.0 (Baltimore: STScI). B. Simon, CDBS

1996, “certify”

ICD-47 (http://www.ess.stsci.edu/projects/distribution/ICD47/ICD-47 RevF.pdf)

Appendix A

The check for changes in the ETC output due to changes in SYNPHOT data files is

done in a testing environment that is a replica of the test environment used by the APT

team to test the ETC software. The test is done using test cases stored in the insTest

directory. Each instrument has a test suite, which is the same used for the test of the ETCs.

21

The test suite, or the files with the parameters used for testing, are located in the directory

/panthro/data1/insTest/ETC/JUNIT/testFiles/regressionRepository/. In this directory

there is a subdirectory for each of the instruments; which in turn contain subdirectories for

each observation mode (e.g. IMAGING or SPECTROSCOPIC), source type (e.g. EXTENDED,

POINT), and in some cases by detector (e.g. HRC, WFC). An example of these files is the

NICMOS test case log979.xml for point imaging mode. The first part of the file looks like this:

<WebETC Request>

<RequestID>NICIMAG979</RequestID>

<fIndex>-1</fIndex>

<SNR>10</SNR>

<nic3Mode>ACCUM</nic3Mode>

<detector>nic1</detector>

<fsorigin>SpectrumBlackBody</fsorigin>

<EarthshineMult>1.0</EarthshineMult>

<fcalfile>GD71</fcalfile>

<felambda>5500</felambda>

<femag>15</femag>

<fbbtemp>5500</fbbtemp>

<fplambda>5500</fplambda>

<science mode>Imaging</science mode>

<fRedshift>0.0</fRedshift>

<ZodiSpec>ZodiStandard</ZodiSpec>

<background0>edu.stsci.hst.HstBackgroundModelSky</background0>

<nic2Mode>ACCUM</nic2Mode>

<fL1 flux>0.</fL1 flux>

<fOtherFile />

<fStellar>O5 V</fStellar>

<fL3 flux>0.</fL3 flux>

<fL1 fwhm>0.</fL1 fwhm>

<ModelName>HST/NICMOS</ModelName>

<nic2filt0>F110W2</nic2filt0>

<fL3 fwhm>0.</fL3 fwhm>

<fbpgsfile>O5V</fbpgsfile>

<extractionRegionSquare>1</extractionRegionSquare>

<febmvtype>gal1</febmvtype>

<ZodiMag>30.0</ZodiMag>

<mode access>supported</mode access>

<crsplit>1</crsplit>

<gain>1</gain>

<EarthshineSpec>EarthshineStandard</EarthshineSpec>

<nic1Mode>ACCUM</nic1Mode>

<fdiameter>10</fdiameter>

<fL1 center>0.</fL1 center>

<Time>1000</Time>

22

<fpmag>22</fpmag>

<instrument>NICMOS</instrument>

<fL2 center>0.</fL2 center>

<EarthshineStandard>Average</EarthshineStandard>

<fftype>fpmag</fftype>

<ZodiStandard>Average</ZodiStandard>

<fnonstellar>Elliptical</fnonstellar>

<ExposureName>server exposure</ExposureName>

<ZodiMult>1.0</ZodiMult>

<fpunit>Bessell/H</fpunit>

<fL3 center>0.</fL3 center>

<fL3 center>0.</fL3 center>

<feunit>Johnson/V</feunit>

<xRegionType>Square</xRegionType>

<simmode>SNR</simmode>

<fIsLambda>true</fIsLambda>

<fL2 flux>0.</fL2 flux>

...

As you might notice, the test cases are in XML format; so the nomenclature is difficult to decipher.

Furthermore, the files provide values for all the exposure parameters, spectral distribution, etc.,

even if those are not necessary for the particular test case. The way in which the software

determines which mode and parameters should be used is via special parameters also listed in

this file. For example, both parameters: Time and S/N (shown in bold face), have assigned values

but only the mode determined by the parameter <simmode> (SNR or Time) is used. The logs

for the reference runs can be found in these directories too; and these will be used to compare

against the output of the new run. Another file in these directories is the parameter list file

(parameterList.txt). This file contains a list of the parameters that are used to limit the amount

of information compared in each regression test. For example, the following list indicates that,

from all the parameters that result from an ETC run, only the Time, Slitless Source Count Rate,

Total Sky Counts, Sky Count Rate, Total Counts, and Total Count Rate in a Box are compared:

<requestParameters>

<Time> <TotalSourceCounts Class="edu.stsci.hst.SpectrumResultHandler" />

<SlitlessSourceTotalCountRate/>

<TotalSkyCounts/>

<SimpleSlittedESZLSkyRate Class="edu.stsci.hst.SpectrumResultHandler"

switchName="SlittedSpectroscopy" switchValue="true" />

<SkyRate/>

<TotalCounts/>

<TotalRateForBox/>

</requestParameters>

Note also that the reference runs, used for the comparison against the test run, might have

23

been generated a while ago, so these will need to be modified every time a new SYNPHOT

data file is delivered or when there are changes to the ETCs. Also, the test suite is fixed. If

a new test needs to be added, or current test cases have to be modified, the reference cases

have to be regenerated. Currently the update of test cases is done in a controlled way via

builds against the ETC software. However, in order to simplify the determination and review

of these possible new test cases, a development area was created where the instrument teams

can experiment with them. Once it is determined that these new test cases should become a

permanent part of the test suite, these should be delivered to the ETC group via a PR against

ETC and CDBS (the latter as secondary subsystem). The ETC group will make sure that

those test cases are incorporated to the current ETC standard test suite and that the reference

run is re-generated. The development area where new test cases can be tested is located in:

/panthro/data1/insTest/ETC/JUNIT/testFiles/instrumentDev/; where the script to generate

the reference run is called insGenerate. The insCheck script in this directory will work just as

the insTest script. It is recommended to anyone modifying the test cases, the parameter list, or

developing new test cases, to consult the ETC development team. Their knowledge of the software

and the XML file formats can help to make the changes almost painless.

24

