Mkload
Bernie Simon
July 25, 1996

Usage

The task is run by entering the name of a task followed by a list of the reference
files to create load files for. For example,

mkload a3d1145dy.cy0 d9g1458cu.r2h

Wild card patterns can be used in the list of filenames, but care should
be taken that the pattern expands to the image header file name and not the
data file name. The output of the task is a load file for each file name on the
command line. The load file has the same root file name as the original file, but
has the extension .lod.

Each load file describes a single reference file. A load file is an ASCII file with
no upper limit on the length of its fields. Field widths are variable, so no space
1s wasted. Because the load file is ASCII, it can be viewed and editing with any
text editor and transferred between computer systems without conversion.

The loadfile is divided into two parts: a header and body. The body is
further subdivided into rows. Each divison has a terminator. The termintaor
for the heading is as ENDHEADER line. For the body it is an ENDFILE line.
For each row it is an ENDROW line. A terminator is a single word, in either
case, starting in the first column, as the sole word on the line. Comments can
be placed anywhere in the loadfile before the ENDFILE line. Comments are
any line whose first non-white character is a sharp (#). Blank lines are treated
as comments, except that they can also follow the ENDFILE line.

This task copies the information that will be stored in the database from the
reference file to the load file. It reads the CDBS database to get the comparsion
file name sets the COMPARISON_FILE to this value. If no comparison file is
found in the database, it sets the field to “(INITIAL)”. If the useafter date is
not found in the reference file header, it sets the USEAFTER_DATE field to the
useafter date of the comparison file on the assumption that the useafter date of
the reference file is the same as that of the comparsion file.

Some other fields are left blank that must be filled in by the user. These
are the OPUS_FLAG, CHANGE_LEVEL, and COMMENT in the header and
PEDIGREE, OBSERVATION_BEGIN_DATE, OBSERVATION_END_DATE, and
COMMENT in the body of the load file.



Data Files

Mkload uses the catalog file to determine which type of reference file it is reading
The catalog file contains the selection rules used to determine the instrument
name and reference file type for a reference file. The first match that succeeds
determines the reference file type. If no records in the catalog match the refer-
ence file, the task prints a warning message. The fields in the catalog file are
described in the documentation for the certify task.

Environment Variables

Mkload uses three environment variables that control its access to the database.
CDBS_SERVER sets the database server the task accesses. CDBS_DB set the database
that is used by the task. And CDBS_USER sets the user name used to access the
database. If these three environment variables are not found, the values used by
the task default to ROBBIE, cdbs_ops, and the user’s login name, repectively.

Algorithm

The main routine in mkload is named task. It reads the catalog file and the
loops over each reference file on the command line, calling mkload to create the
load file. After processing all the reference files, the main routine closes the
catalog file.

Mkload determines the type of the reference file from the catalog file, creates
an empty table, and calls mkload_header and mkload body to read the informa-
tion from the reference file into the table. It then calls mkload name to create
the name of the load file, writes the table to the load file, and frees the table.
Mkload header writes the load file header keywords. Some of these keywords
are read from the database, so, for the present, they are left blank. Mkload body
writes the observation mode keywords and the pedigree information to the body
of the table. If the reference file is an image, it writes one row to the body of
the table from the information in the image header. If the reference file is a
table, 1t writes one row for each row in the table. The observation mode key-
words are read from an array in obsmode.h which contains all the observation
mode keywords indexed by instrument. The function searches the reference
file for the keyword and if it finds it, it 1s written to the table. If not, that
particular keyword is not written. Mkload compfile sets the comparsion file
name and useafter dates in the header to values read from the CDBS database.
Mkload name creates the name of the load file by changing the extension of the
reference file to .lod.

The loadfile library handles reading and writing of load files. The load
file 1s read into an in memory structure called a table, which 1s then accessed
by the program. The functions to read and write a load file are:

tab = read_loadfile (fname)



write_loadfile (fname, tab)

Write_ loadfile does not free the table structure or modify it in any way.
To free the table, the function free_table must be called.

All characters are converted to upper case when read into the table and
superfluous blanks are deleted. Superfluous blanks are leading and trailing
blanks and more than one blank between words. So when retrieving information
from the table, specify keyword names and column names in upper case with
only one blank between words.

The table functions implement an in-memory ASCII table. The table has
header keywords accessed by name and cells accessed by column name and row
number. The values returned by the get functions are pointers to the contents
of the table and should not be modified by the calling function. Also, doing
a put to the table may invalidate the pointers returned if memory is shuffled.
Copy the results of a get to another string before doing a put. Table access is
oriented towards random access, although sequential access is also supported.
The get functions return a value of NULL if the get does not succeed.

For random access, function get_tab key reads a header keyword and
get_tab_cell reads a table cell. For sequential access, get_tab_keyname bynum
retrieves a header keyword name, get_tab keyval bynum retrieves a header
keyword value, and get_tab_cell bynum reads a table cell. The macros
nkey_table, nrow_table, and ncol_table get the dimensions of a table.

str = get_tab_key (tab, keyname)

str = get_tab_cell (tab, colname, row)

str = get_tab_keyname_bynum (tab, keynum)
str = get_tab_keyval_bynum (tab, keynum)
str = get_tab_cell_bynum (tab, colnum, row)

nkey = nkey_table (tab)
nrow = nrow_table (tab)
ncol = ncol_table (tab)

Most often a table is created by reading the contents of a load file into it.
However, 1t is possible to create a table in memory or modify the contents of
a table read from a load file. The use of the add column routine is optional,
as columns are implicitly added when the first row of the table is written. The
add column routine can be used when the table column names are known before
the table is created. The add column routine returns the number of the column
created or -1 if the column cannot be created because the table is already written
to.

The put functions return a value of -1 if the put does not succeed and 0 if it
does. In addition to the error codes returned by the get and put functions, an
error message is stored in the global variable lod_error.



The functions put_tab_key and put_tab_cell put a new value to the table
header and body respective. The functions cat_tab key and cat_tab_cell
concatenate a value to an existing value in a table.

ok = put_tab_key (tab, keyname, value)
ok = put_tab_cell (tab, colname, row, value)
ok = cat_tab_key (tab, colname, value)
ok = cat_tab_cell (tab, colname, row, value)

Test Data

Two test files are stored in the test subdirectory. To test this task, run it with
the command line

mkload a3d1145dy.cy0 d9g1458cu.r2h



