12797 - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter

Update \{FENA4\}

Cycle: 19, Proposal Category: ENG/COS
(Availability Mode: RESTRICTED)

INVESTIGATORS

Name	Institution	E-Mail
Dr. Steven V. Penton (PI) (Contact)	Space Telescope Science Institute	penton@stsci.edu
Dr. Charles R. Proffitt (CoI)	Computer Sciences Corporation	proffitt@ stsci.edu
Dr. David J. Sahnow (CoI)	Space Telescope Science Institute	sahnow@ stsci.edu
Dr. Steven Osterman (CoI)	University of Colorado at Boulder	steven.osterman@colorado.edu
Dr. Alan D. Welty (CoI)	Space Telescope Science Institute	welty@stsci.edu

VISITS					
Visit	Targets used in Visit	Configurations used in Visit	Orbits Used	Last Orbit Planner Run	OP Current with Visit?
01	(1) AZV18 (11) AZV18-OFFSET-NE-1.4AS DARK	COS/FUV COS/NUV S/C	2	24-Jul-2012 21:28:18.0	yes
02	(1) AZV18 (13) AZV 18-OFFSET-AD+0.3 (14) AZV 18-OFFSET-AD-0.5 DARK	COS/FUV COS/NUV S/C	3	24-Jul-2012 21:29:10.0	yes

Proposal 12797 (STScl Edit Number: 10, Created: Tuesday, July 24, 2012 8:38:03 PM EST) - Overview

Visit	Targets used in Visit	Configurations used in Visit	Orbits Used	Last Orbit Planner Run	OP Current with Visit?
03	(1) AZV18 (5) AZV18-OFFSET-XD+0.5 (10) AZV 18-OFFSET-XD+1.0 (15) AZV 18-OFFSET-XD+1.5 DARK	$\begin{aligned} & \text { COS/FUV } \\ & \text { COS/NUV } \\ & \text { S/C } \end{aligned}$	3	24-Jul-2012 21:30:02.0	yes
04	(1) AZV18 (5) AZV18-OFFSET-XD+0.5 (10) AZV 18-OFFSET-XD+1.0 (15) AZV 18-OFFSET-XD+1.5 DARK	COS/FUV COS/NUV S/C	3	24-Jul-2012 21:30:46.0	yes
05	(1) AZV18 (5) AZV18-OFFSET-XD+0.5 (10) AZV18-OFFSET-XD+1.0 (15) AZV18-OFFSET-XD+1.5 DARK	COS/FUV COS/NUV S/C	3	24-Jul-2012 21:31:42.0	yes
06	(2) WD1657+343 (21) WD1657+343-OFFSET-NW- 1.4AS (22) WD1657+343-OFFSET-XD-1.0	COS/FUV COS/NUV	2	24-Jul-2012 21:32:37.0	yes
66	$\begin{aligned} & \text { (2) WD1657+343 } \\ & \text { (21) WD1657+343-OFFSET-NW- } \\ & \text { 1.4AS } \\ & \text { (22) WD1657+343-OFFSET-XD-1.0 } \end{aligned}$	COS/FUV COS/NUV	2	24-Jul-2012 21:33:28.0	yes
11	(1) AZV18 (11) AZV18-OFFSET-NE-1.4AS DARK	COS/FUV COS/NUV S / C	1	24-Jul-2012 21:33:55.0	yes
12	(1) AZV18 (13) AZV 18-OFFSET-AD+0.3 (14) AZV18-OFFSET-AD-0.5 DARK	$\begin{aligned} & \text { COS/FUV } \\ & \text { COS/NUV } \\ & \text { S/C } \end{aligned}$	2	24-Jul-2012 21:34:39.0	yes

Proposal 12797 (STScl Edit Number: 10, Created: Tuesday, July 24, 2012 8:38:03 PM EST) - Overview

Visit	Targets used in Visit	Configurations used in Visit	Orbits Used	Last Orbit Planner Run	OP Current with Visit?
13	(1) AZV18 (5) AZV18-OFFSET-XD+0.5 (10) AZV18-OFFSET-XD+1.0 (15) AZV18-OFFSET-XD+1.5 DARK	COS/FUV COS/NUV S/C	2	24-Jul-2012 21:35:19.0	yes
14	(1) AZV18 (5) AZV18-OFFSET-XD+0.5 (10) AZV 18-OFFSET-XD+1.0 (15) AZV 18-OFFSET-XD+1.5 DARK	COS/FUV COS/NUV S/C	2	24-Jul-2012 21:36:01.0	yes
15	(1) AZV18 (5) AZV18-OFFSET-XD+0.5 (10) AZV 18-OFFSET-XD+1.0 (15) AZV 18-OFFSET-XD+1.5 DARK	COS/FUV COS/NUV S/C	2	24-Jul-2012 21:36:49.0	yes
16	(2) WD1657+343 (21) WD1657+343-OFFSET-NW- 1.4AS (22) WD1657+343-OFFSET-XD-1.0 DARK	$\begin{aligned} & \text { COS/FUV } \\ & \text { COS/NUV } \\ & \text { S/C } \end{aligned}$	2	24-Jul-2012 21:37:46.0	yes

29 Total Orbits Used

ABSTRACT

Verify the ability of the Cycle 20 COS FSW to place an isolated point source at the center of the PSA, using FUV dispersed light target acquisition (TA) from the object and all three FUV gratings at the Second Lifetime Position (SLP). This program is modeled from the activity summary of FENA4.

This program should be executed after the new HV, XD spectral positions, and focus are determined and updated. In addition, the LIFETIME=ALTERNATE TA FSW parameters should be updated prior to execution of this program.

Proposal 12797 (STScl Edit Number: 10, Created: Tuesday, July 24, 2012 8:38:03 PM EST) - Overview
NUV imaging TAs have previously been used to determine the correct locations for FUV spectra. We follow the same procedure here.

OBSERVING DESCRIPTION

Successful FUV dispersed light centering (target acquisition, TA) of a point source within the PSA at the second lifetime position (SLP) is verified. This activity confirms the FUV TA parameters in the cycle 20 flight software (FSW) and verifies that the FUV centering error is within the required thresholds. viz. 0.1 arcsec.

All Visits will be run at LIFETIME=ALTERNATE. Before each exposure, the focus is updated to the position recommended at the SLP. At the end of each visit, the focus positions are restored to their original values. Each orbit which uses a non-standard FUV Voltage at the time of execution (all of them) are wrapped by a single NON-INT sequence per orbit.

Visit 1 tests ACQ/SEARCH and also verifies that the updated FUV TA sub-arrays are correct for the 2LP. After an NUV imaging TA and the standard NUV to FUV offset to the 2 LP , a $3 \times 3 \times 1.0$ ACQ/SEARCH pattern is simulated by moving the target relative to the aperture via POSTARGS. At each position, a quick spectrum is taken at each location (no TAGFLASH). $1^{\prime \prime}$ was selected instead of the default 1.767 " so that we ensure that no target light is missing the TA sub-arrays at locations relative to the PSA where target light still enters the PSA. An actual $3 \times 3 \times 1.0$ " ACQ/SEARCH is performed on the same centered target. Finally, a $3 \times 3 \times 1.767^{\prime \prime}$ ACQ/SEARCH is performed on a target offset by 1.414 " in the aperture. Using the Roll angle on the data of the expected observation, the target will be offset by 1 " in AD (Along Dispersion) and 1 " in XD (crossdispersion).

Visit 2 tests ACQ/PEAKD. From a centered position, simulate a wide ACQ/PEAKD pattern (i.e., $9 \times 0.4^{\prime \prime}$). Take spectra at all positions (via POSTARGs) using G130M/1309. Track Ly to make sure the Geocoronal light remains outside the TA extraction boxes (subarrays) at all offsets. Repeat an actual 9 x 0.4 " ACQ/PEAKD for a centered target, then center on off-centered target in both directions. $[9 \times 0.3$ " (offset +0.3 " Y) and 7 x 0.5 " (offset $-0.8^{\prime \prime} \mathrm{Y}$)]. Roll angle second week of April is $190+/-2.5^{\circ}$.
Before moving the target away from the centered position, take G140L, G130M, and G160M spectra at centered and extreme CENWAVE positions. Use moderate FLASH exposures to track the slope of the WCA light on the detector to determine if CENWAVE specific WCA-to-PSA offsets are required.

Visits 3-5 test ACQ/PEAKXD and define the plate scales for each grating (Visit 3=G130M, Visit 4=G160M, Visit $5=\mathrm{G} 140 \mathrm{~L}$). Take spectra as the target is stepped (via POS-TARGs) in the XD direction to determine the plate scales. WCA lamp will also be flashed to verify the plate scale at the

Proposal 12797 (STScl Edit Number: 10, Created: Tuesday, July 24, 2012 8:38:03 PM EST) - Overview

WCA position and the PSA locations. Spectra will be taken at 9 XD locations ($0^{\prime \prime}, \pm 0.3^{\prime \prime}, \pm 0.6^{\prime \prime}, \pm 1.1^{\prime \prime}, \pm 1.6^{\prime \prime}$). This will need to be done for each grating. We will need to test these plate scales (and possibly updated WCA to PSA offsets) in a followup visit. Also, test ACQ/PEAKXD at current and offset positions using the initial offsets and plate scales previously determined. The test sequence is centered, $+/-1.0^{\prime \prime},+/-0.5^{\prime \prime}$, and finally $+/-$ 1.5 " to determine the effects of gain sag on the centering accuracy (3 visits x 2 orbits each.) Also, take a centered G140L BOA spectrum in Visit 5 .

Visit 6 is the confirmation visit. Will test ACQ/SEARCH + PEAKXD + PEAKD on a target offset -1 " in AD, and +1 " off in XD. G160M will use a $3 \times 3 \times 1.767$ " ACQ/SEARCH + PEAKXD $+7 \times 0.45$ " PEAKD. G130M will use a PEAKXD $+5 \times 0.8^{\prime \prime}$ PEAKD. Also, test each grating for $+/-1.0$ " ACQ/PEAKXDs to verify plate scales and WCA-to-PSA offsets. We would like to run this Visit on as close to Cycle 20 conditions as possible. (LIFETIME=ALTERNATE, using FSW HV and focus values if possible)

Visits 11-16 are near duplicates of Visits 1-6 without the commanding at the beginning to reset the Detector HV to the second lifetime position value, and without the exposure at the end to return it to HVLOW. The NON-INT sequences in these visits are based upon the needs of the original program goals. The NON-INTs in Visits 1-6 (the executing visits) are set to be one per orbit to prevent the HV from being accidently reset during the orbits.

Visits 11-16 are on permant hold and are included only to demonstrate the actual desired timing of the Visits on-orbit. (The HV rampups will be performed before the orbit starts so that this time is not used up during the actual visit.)

On March 22, 2012 we decided on HV values of $157 / 153$ for SegA/SegB and focus offsets for G130M (+190), G160M (+250), and G140L (+0). The G140L focus offset is unknown at this time as a contingency visit of 12796 will not have executed before this program.

On March 26, 2012 we realised that the breathing correction was not being applied correctly. Our new values for the focus offsets are G130M $(+120)$, G160M (+160), and G140L (+0)

On March 26, 2012 we decided to slip Visits 1-5 by one week. New Roll angles have been calculated.
Then new roll angles are:
Visit 1 and 2: $195+/-2.5(+5)$
Visits 3-5 : $205+/-2.5$ (no change)
Visit 6 : (225 +/- 2.5) (+45)

On March 29, 2012 we decided to execute visits 1 and 2 at the HV of FUVA/B $=167 / 163$. Since it took 403 s to ramp to $162 / 159$ we need an additional 15 s to get the A segment to 167 (3s per step), or 418s.

On April 24, 2012 we decided to slip Visit 5 to the week of May 14 or May 21, 2012 and Visit 6 to Jun 5, 2012.

So the roll angles are now : Visit $5=225+/-2.5$ Visit $6=180+/-2.5$

After the Comsic Bug Zapping event of late April 2012, we have once again been forced to move visits 3-6. Then new plan windows have Visits 3-5: 13-Jun-2012 till 30-Jun-2012 is $250+/-2.5 \mathrm{~d}$ (visits 3-5)

Visit 6:03-Jul-2012 til 07-Aug-2012
Visit 66: 06-Aug-2012 til 20-Aug-2012

ADDITIONAL COMMENTS

As of $3 / 5 / 2012$, the planned schedule for 12797 is :

SMS of Apr 9 visit 1 of 12797	1 orbit (external)
SMS of Apr 9 visit 2 of 12797	2 orbits (external)
SMS of Apr 30 visits $3-5$ of 12797	6 orbits (external)
SMS of May 21 or May 28 visit 6 (confirmation) of $12797 \quad 2$ orbits (external)	

From APT (V20.0.3), the roll angles availble during these dates are:

09 Apr 2012181.27-191.27 (original Visit 1/2) (Visit 1) Target Date, Roll angle $=190+/-2.5$
10 Apr 2012182.18-192.18 (original Visit 1/2)
11 Apr 2012183.08-193.08 (original Visit 1/2)
12 Apr 2012183.98-193.98 (original Visit 1/2)
13 Apr 2012184.88-194.88 (original Visit 1/2) (Visit 2) Target Date, Roll angle $=190+/-2.5$
14 Apr 2012185.78-195.78 (original Visit 1/2)

Proposal 12797 (STScl Edit Number: 10, Created: Tuesday, July 24, 2012 8:38:03 PM EST) - Overview 15 Apr 2012186.68-196.68 (original Visit 1/2)

30 Apr 2012199.92-209.92 (original Visit 3-5)
01 May 2012200.80-210.80 (original Visit 3-5)
02 May 2012191.87-221.47 (original Visit 3-5)
03 May 2012192.75-222.35 (original Visit 3-5) Target Date, Roll angle $=205+/-2.5$
04 May 2012193.62-223.22 (original Visit 3-5)
05 May 2012194.49-224.09 (original Visit 3-5)
06 May 2012195.37-224.97 (original Visit 3-5)

21 May 2012179.12-218.12
22 May 2012177.98-216.98
23 May 2012176.83-215.83 (Visit 6) Target Date, Roll angle $=180+/-2.5$
24 May 2012175.68-214.68
25 May 2012174.53-213.53
26 May 2012173.38-212.38
27 May 2012172.23-211.23

This version was created with the final APT build 20.0.3 APT (Mon Mar 19 2012)

On March 26, we decided to slip Visits 1-5 by one week. The new roll angles are :

16 Apr 2012187.57-197.57 (revised Visit 1/2) (Visit 1) Target Date, Roll angle $=195+/-2.5(+5)$
17 Apr 2012188.46-198.46 (revised Visit 1/2)
18 Apr 2012189.35-199.35 (revised Visit 1/2)
19 Apr 2012190.24-200.24 (revised Visit 1/2)
20 Apr 2012191.13-201.13 (revised Visit 1/2) (Visit 2) Target Date, Roll angle $=195+/-2.5(+5)$
21 Apr 2012192.01-202.01 (revised Visit 1/2)
22 Apr 2012192.89-202.89 (revised Visit 1/2)

Proposal 12797 (STScl Edit Number: 10, Created: Tuesday, July 24, 2012 8:38:03 PM EST) - Overview

07 May 2012193.84-226.06 (revised Visit 3-5)
08 May 2012194.72-226.94 (revised Visit 3-5)
09 May 2012195.59-227.84 (revised Visit 3-5)
10 May 2012196.47-228.72 (revised Visit 3-5) Target Date, Roll angle $=205+/-2.5$ (no change)
11 May 2012197.34-229.62 (revised Visit 3-5)
12 May 2012198.22-230.50 (revised Visit 3-5)
13 May 2012199.09-231.37 (revised Visit 3-5)

21 May 2012206.84-238.67
22 May 2012207.72-239.55
23 May 2012208.61-240.44 (Visit 6) Target Date, Roll angle $=225+/-2.5(+45)$
24 May 2012209.50-241.41
25 May 2012210.39-242.30
26 May 2012211.18-243.29
27 May 2012212.07-244.18
28 May 2012212.97-245.08
29 May 2012213.87-246.09
30 May 2012214.77-246.99
31 May 2012215.57-248.01
01 Jun 2012216.48-248.92
02 Jun 2012217.38-249.82
03 Jun 2012218.29-250.86
04 Jun 2012220.50-251.30

We are forced to slip Visit 5 to 14-MAY-2012 to 28-MAY-2012 \&
Visit 6 to 05-JUN-2012 to 21-JUN-2012.
So, we are back to 180 degrees for Visit 6 ond 225 degrees for Visit 5

Proposal 12797 (STScl Edit Number: 10, Created: Tuesday, July 24, 2012 8:38:03 PM EST) - Overview
07 May 2012193.84-226.06
08 May 2012194.72-226.94
09 May 2012195.59-227.84
10 May 2012196.47-228.72
11 May 2012197.34-229.62
12 May 2012198.22-230.50
13 May 2012199.09-231.37
14 May 2012199.97-232.30 -> Visit 5 is $225+/-2.5$
15 May 2012200.85-233.18
16 May 2012201.73-234.11
17 May 2012202.61-234.99
18 May 2012203.49-235.87
19 May 2012204.37-236.82
20 May 2012205.25-237.70
21 May 2012206.84-238.67 -> Visit 5 is $225+/-2.5$
22 May 2012207.72-239.55
23 May 2012208.61-240.44
24 May 2012209.50-241.41
25 May 2012210.39-242.30
26 May 2012211.18-243.29
27 May 2012212.07-244.18
28 May 2012212.97-245.08

05 Jun 2012163.51-199.31 -> Visit 6, back to 180 degrees
06 Jun 2012162.38-198.18
07 Jun 2012161.44-196.84
08 Jun 2012160.31-195.71
09 Jun 2012159.19-194.59
10 Jun 2012158.06-193.46

Proposal 12797 (STScl Edit Number: 10, Created: Tuesday, July 24, 2012 8:38:03 PM EST) - Overview
11 Jun 2012151.99-195.77
12 Jun 2012150.87-194.65

Due to the 'bonus counts' anamoly, visits 3-5 have been shifted to the Jun 13 to Jun 30 window.
The available roll angles are :

13 Jun 2012220.83-260.57 -> Visit 3-5 is 250 +/- 2.5 works for the entire window
14 Jun 2012221.77-261.51
15 Jun 2012222.61-262.63
16 Jun 2012223.56-263.58
17 Jun 2012224.50-264.52
18 Jun 2012230.06-265.68
19 Jun 2012231.01-266.63
20 Jun 2012231.97-267.59
21 Jun 2012232.83-268.76
22 Jun 2012233.79-269.72
23 Jun 2012234.76-270.69
24 Jun 2012235.73-271.66
25 Jun 2012239.81-271.61
26 Jun 2012240.78-272.58
27 Jun 2012241.76-273.56
28 Jun 2012242.75-274.55
29 Jun 2012243.63-275.63
30 Jun 2012244.62-276.62 -> Visit 3-5 is $250+/-2.5$ works for the entire window

Visit 6 is now sometime in July (TBD), we can cover this entire window with a roll constlrtaint of 135+-/-2.5

Visit 6 performed on July 23, 2012, BUT the wrong SIAF file was in the TRANS. That is, it used the BEST positon as requested, which on July 23rd was

Proposal 12797 (STScl Edit Number: 10, Created: Tuesday, July 24, 2012 8:38:03 PM EST) - Overview
the SLP. However, when the program was TRANSed on July 10ish, the 'BEST' was the OLP, so that is where it left it !!

Re-executiving Visit 6 as Visit 66, the roll angle was relaxed, so we may not get exactly what we want (135=orient), but we can do the math and figure out the correct motions.

Proposal 12797 - HV + ACQ/SEARCH TEST (01) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FE.

Proposal 12797, HV+ACQ/SEARCH TEST (01), completed

Diagnostic Status: Warning

Scientific Instruments: COS/NUV, S/C, COS/FUV
Special Requirements: SCHED 100\%; ORIENT 192.5D TO 197.5 D; BETWEEN 16-APR-2012 AND 22-APR-2012
Comments: ACQ/SEARCH Test. The target is AVZ18 (the SMOV TA target).

Visit
For a $3 \times 3 \times 1$ " spiral pattern, the telescope slew is [AD, XD]

0.00	0.00
1.00	0.00
1.00	1.00
0.00	1.00
-1.00	1.00
-1.00	0.00
-1.00	-1.00
0.00	-1.00
1.00	-1.00

The roll angle is constrained to $195+/-2.5$ degrees, schedulability $=100 \%$. First we use pos-targs to simulate the $3 x 3 x 1.0^{\prime \prime}$ pattern, taking TAGFLASHed spectra at each location. We then perform a $3 x 3 x 1.0^{\prime \prime}$ ACO/SEARCH on the centered target. We then offset the target 1 " in XD and 1 " in AD and perform a $3 \times 3 \times 1.767^{\prime \prime}$ ACQ/SEARCH on the target.
(HV+ACQ/SEARCH TEST (01)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/SEARCH TEST (01)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/IMAGE.
HV+ACQ/SEARCH TEST (01)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/SEARCH TEST (01)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/SEARCH TEST (01)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/SEARCH TEST (01)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/SEARCH TEST (01)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/SEARCH TEST (01)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.
(HV+ACQ/SEARCH TEST (01)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE

\#	Name	Target Coordinates	Targ. Coord. Corrections	Fluxes	Miscellaneous
(1)	AZV18	RA: 004712.1700 (11.8007083d)	Proper Motion RA: -0.0003 sec of time/yr	$\mathrm{V}=12.48$	Reference Frame: ICRS
		Dec: -73 0632.68 (-73.10908d)	Proper Motion Dec: -0.0035 arcsec/yr	$(\mathrm{B}-\mathrm{V})=+0.04$	
		Equinox: J2000	Epoch of Position: 2000		

Comments: B2Ia, Magellanic Clouds. Nominal ETC exposure times from spectrum supplied by D. Lennon:
NUV, MIRRORA, BOA: 27 s (COS.ta.360711)
Fixed Targets
FUV, G130M, 1309, PSA: 2s (COS.sa.360701) \& $182 s ~ S / N=10$ spectroscopy (COS.sp.360698)
FUV, G140L, 1105: 038s S/N=10 spectroscopy (COS.sp.389720)
FUV, G140L, 1105: 038s S/N=10 spectroscopy (COS.sp.389720)

```
FUV, G160M, 1600:0215s S/N=10 spectroscopy (COS.sp.389715)
```

RA Offset: -3.7945E-4 Degrees
$\mathrm{V}=12.48$
$(\mathrm{B}-\mathrm{V})=+0.04$

Offset Position (AZV18-OFFSET-NE 1.4AS)

Reference Frame: ICRS

Comments: This target is offset by $1^{\prime \prime}$ in both $A D(X)$ and $X D(Y)$, so sqrt $(2)=1.414^{\prime \prime}$ total offset The U3 roll angle has been constrained to $190+/-2.5$ degree.

AZV18 offset for ACQ/SEARCH $(A D, X D)=\left(-1^{\prime \prime},-1^{\prime \prime}\right)=-\operatorname{sqrt}\left(2^{\prime \prime}\right) @ 10^{\circ} \mathrm{N}$ of W
$R A=-\operatorname{sqrt}(2)^{\prime *} \cos \left(10^{\circ}\right)=-1.3927^{\prime \prime}=-0.000386869^{\circ}$
$D E C=+\operatorname{sqrt}(2) " * \sin \left(10^{\circ}\right)=0.24558^{\prime \prime}$
3/26/12: Target changed to $195+/-2.5$ degrees
AZV18 offset for ACQ/SEARCH $(A D, X D)=\left(-1^{\prime \prime},-11^{\prime \prime}\right)=-$ sqrt $\left(2^{\prime \prime}\right) @ 15^{\circ} \mathrm{N}$ of W
$R A=-\operatorname{sqrtt}(2)^{\prime \prime *} \cos \left(15^{\circ}\right)=-1.36603^{\prime \prime}=-0.00037945^{\circ}$
$D E C=+\operatorname{sart}(2)^{\prime \prime} * \sin \left(15^{\circ}\right)=0.366025^{\prime \prime}$

Proposal 12797 - HV+ACQ/SEARCH TEST (01) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{F E$.

Proposal 12797 - HV + ACQ/SEARCH TEST (01) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FE.

4	$\begin{aligned} & \text { G130M - B (1) AZV18 } \\ & \text { ASELINE S } \\ & \text { PECTRUM } \\ & \text { (COS.sp. } 360 \\ & 698 \text {) } \end{aligned}$	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=60 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=S0090D03 } \\ & 6 ; \\ & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$

Sequence 1-17 Non-I	180 Secs	
nt in HV+ACQ/SEA	RCH TEST (01)	$[==>]$

 set for the G130M. Tagflash sequence is 36 s on - 54 off - 36s on - 54 off (72 s lamp time).
NOTE THIS ETC RUN WAS MADE BEFORE THE CYCLE 20 ETC UPDATE TO ETC20.1.1
 M sensitivities assumed here.
The ETC20.1.1 Simulation of the G130M/1309 (COS.sp.389705) gives $S / N / R E=10$ in 258 s.
Our scaling factor is therefore $>=182 / 258=0.71$ to convert from ETC20.1.1 today.
(We will use 0.75 for simplicity)

5	G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME $=60$	POS TARG 1.0,null	Sequence 1-17 Non-I	20 Secs	
	OSTARG + SPECTRU		1309 A			nt in $\mathrm{HV}+\mathrm{ACQ} / \mathrm{SEA}$	[==>]	
	SPECTRU M1 (1,0)			FP-POS=3;		RCH TEST (01)		
	(COS.sa. 360			FLASH=YES;				[1]
	701)			LIFETIME-POS=A LTERNATE				

Comments: POSTARG TO SIMULATE ACQ/SEARCH. S/N $=60$ is reached in 2 seconds. We want to get a decent look at the spectrum, so we'll observe for 20 seconds. (~ 16000 total counts $(A+B)$)

Proposal 12797 - HV + ACQ/SEARCH TEST (01) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FE.

Proposal 12797 - HV+ACQ/SEARCH TEST (01) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FE.

17	$\begin{aligned} & \text { S/C to RES DARK } \\ & \text { ET the G130 } \\ & \text { M/1309 focu } \\ & \mathrm{s} \end{aligned}$	S/C, DATA, NONE	SPEC COM INSTR ELOSMPATCH; QESIPARM ACTIO N REPLACE; QESIPARM GRATI NG G130M; QESIPARM CENT WAVE 1309; QESIPARM FOCUS 170	Sequence 1-17 Non-I nt in HV+ACQ/SEA RCH TEST (01)	8 Secs	[1]
Comments: Special Commanding to reset the G130M/1309 settings with the original focus, the SCR 344 FSW position (170).						
	HV_RAMP DARK	S/C, DATA, NONE	NEW OBSET; QASISTATES COS FUV HVLOW HVL OW; QASISTATES COS SI OBSERVE OBSE RVE		1 Secs	
	DOWN_TO _HVLOW				[==>]	[2]
Comments: SQL required for qexposure to specify the si_used = "COS".						

Proposal 12797 - HV+ACQ/SEARCH TEST (01) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FE.

Proposal 12797 - HV+ACQ/SEARCH TEST (01) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FE.

Proposal 12797, HV+ACQ/PEAKD TEST (02), completed

Diagnostic Status: Warning

Scientific Instruments: COS/NUV, S/C, COS/FUV
Special Requirements: SCHED 100\%; ORIENT 192.5D TO 197.5 D; AFTER 01 BY 0 D TO 7 D

 to $+1.6^{\prime \prime} \mathrm{X}$. We flash the lamp at all positions

We then perform an actual $9 x 0.4^{\prime \prime}$ ACQ/PEAKD on the centered target, then attempt a $9 x 0.3^{\prime \prime}$ ACQ/PEAKD on a target offset by $+0.3^{\prime \prime}$, then a $7 x 0.5^{\prime \prime}$ offset by $-0.8^{\prime \prime}$.
The roll angle is constrained to $195+/-2.5$ degrees, schedulability $=100 \%$.
(HV+ACQ/PEAKD TEST (02)) Warning (Orbit Planner): VISIBILITY OVERRUN
g.
(HV+ACQ/PEAKD TEST (02)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/PEAKD TEST (02)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKD TEST (02)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKD TEST (02)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.
(HV+ACQ/PEAKD TEST (02)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/PEAKD TEST (02)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/IMAGE

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

Proposal 12797 - HV +ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

$\#$	Label (ETC Run)	Target	Config,Mode,Aperture
1	FUV HVSE GA RAMP UP (167)	DARK	S/C, DATA, NONE
Comments: SQL required for qexposure to specify the si_used $=$ "COS".			

 erefore, the rampup time is $403+(167-162) * 3=418$

The FUV state of HVSEGA must be maintained until the FUV G140L 1105 exposure (exposure 5)

The FUV qasistates s.r. is specifically for maintaining the FUV in the HVSEGA state.

SQL is required for the dump created by this exposure. The FUV state should be changed to HVSEGA.

S/C to updat DARK e the G140L /1105 focus (-370+0)	S/C, DATA, NONE	SPEC COM INSTR	Sequence 1-25 Non-I nt in $\mathrm{HV}+\mathrm{ACQ} / \mathrm{PEA}$ KD TEST (02)	8 Secs	
		ELOSMPATCH;		[==>]	
		QASISTATES COS FUV HVSEGA HVS EGA;			
		QESIPARM ACTIO N REPLACE;			
		QESIPARM GRATI NG G140L;			[1]
		QESIPARM CENT WAVE 1105;			
		QESIPARM FOCUS			

 ed focus value.
The SCR 344 FSW has the following focus G140L positions;
const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] =
$\{1,1105,1598,-370,35092,39716\}$, /* G140L, OSM1 */
(1, 1230, 1591 -30, 35055, 39680) /* G140L, OSM1 */
\{1, 1280, 1590, 19, 35050, 39675\}, /* G140L, OSM1 */

Proposal 12797 - HV + ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN..

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

Proposal 12797 - HV + ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

Proposal 12797 - HV + ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{F E N$.

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

Proposal 12797 - HV + ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

25	S/C to updat DARK	S/C, DATA, NONE			SPEC COM INSTR		8 Secs	[1]				
	e the G130				ELOSMPATCH;	nt in HV+ACQ/PEA KD TEST (02)	[==>]					
	s from 170 t o $290(+120$				QESIPARM ACTIO N REPLACE;	KD TEST (02)						
)				QESIPARM GRATI NG G130M;							
					QESIPARM CENT WAVE 1309;							
					QESIPARM FOCUS 290							
Comments: Special Commanding to overwrite the G130M/1309 settings with the SLP focus position. FENA3 Results suggest we need a +120 focus step adjustment from these values. So, G130M/1309 goes from 170 to+290												
The SCR 344 FSW has the following focus G130M positions; const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] =												
\{0, 1096, 8078, -170, 2665, 7312\}, * G130M, OSM1 */												
\{0, 1300, 7995, O, 2238, 6877), \% G130M, OSM1 */												
\{0, 1309, 7991, 170, 2218, 6857\}, /* G130M, OSM1 */ \{0, 1318, 7987, 340, 2198, 6837\}, /* G130M, OSM1 */												
\{0, 1318, 7987, 340, 2198, 6837\}, /* G130M, OSM1 */ \{0, 1327, 7983, 511, 2177, 6816\}, /* G130M, OSM1 */												
	G130M/130 (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60		Sequence 26-41 Non	176 Secs					
	9 - BASELI NE SPECT		$1309 \text { A }$	0		$\begin{aligned} & \text {-Int in HV+ACQ/PE } \\ & \text { AKD TEST (02) } \end{aligned}$	[==>]					
	RUM			$\begin{aligned} & \text { FLASH=S0200D03 } \\ & 6 ; \end{aligned}$				[2]				
	(COS.sp. 360											
	698)											
				WAVECAL=YES;								
				LIFETIME-POS=A LTERNATE								
Comments: Spectrum of source to define correct location of star when it is centered in NUV (COS.sp.360698). BT=986*(2/3) $=\sim 630$. This will get us S/N~10 per RE in $182 s$. This exposure and the next 8 should be co nsidered an NON-INT Sequence. 36s lamp flash												
NOTE THIS ETC RUN WAS MADE BEFORE THE CYCLE 20 ETC UPDATE TO ETC20.1.1												
(This is a good thing since it is probably closer to reality than the pessimistic sensitivities used in ETC20.1.1) The G140L and G160M ETC simulations were made using 20.1 .1 and will be scaled back to match the G13OM sensitivities assumed here.												
2	G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M		POS TARG -1.6,null	Sequence 26-41 Non -Int in HV+ACQ/PE AKD TEST (02)	20 Secs					
	OSTARG + SPECTRU		$1309 \mathrm{~A}$	0			[==>]	[2]				
	M1 (-1.6)			FP-POS=3;								
	(COS.sa. 360			FLASH=YES;								
	701)			$\begin{aligned} & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$								
Comments: POSTARG TO SIMULATE 9x0.4" ACQ/PEAKD. This is the $x=-1.6$ " position. S/N $=60$ is reached in 2 seconds. We want to get a decent look at the spectrum, so we'll observe for 20 seconds.												
28	G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG -1.2,null	Sequence 26-41 Non -Int in $\mathrm{HV}+\mathrm{ACQ} / \mathrm{PE}$ AKD TEST (02)	20 Secs					
	OSTARG + SPECTRU		$1309 \text { A }$				[==>]					
	M2 (-1.2)											
	(COS.sa. 360							[2]				
	701)											

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

Proposal 12797 - HV + ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.
 o use less due to time constraints.
41 S/C to reset t DARK
S/C, DATA, NONE
he G130M/
309 focus

SPEC COM INSTR	Sequence 26-41 Non	8 Secs	
ELOSMPATCH;	-Int in HV+ACQ/PE	$[==>]$	
QESIPARM ACTIO	AKD TEST (02)		
N REPLACE;			
QESIPARM GRATI			
NG G130M;			
QESIPARM CENT			
WAVE 1309;			
QESIPARM FOCUS			
170			

Comments: Special Commanding to reset the G130M/1309 settings with the original focus, the SCR 344 FSW position (170).

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN.

42	HV_RAMP DARK DOWN_TO _HVLOW	S/C, DATA, NONE	NEW OBSET; QASISTATES COS FUV HVLOW HVL OW;	$\underline{1 S e c s}$	[3]
			QASISTATES COS SI OBSERVE OBSE RVE		
Comments: SQL required for qexposure to specify the si_used = "COS".	ments: SQL required for obset SR necessary to	o specify the si_used = sure to be the very la			

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN...

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN...

Proposal 12797 - HV+ACQ/PEAKD TEST (02) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FEN..

Proposal 12797, HV+ACQ/PEAKXD TEST G130M (03), completed
 This will allow us to measure the plate scale. The $+/-1.6^{\prime \prime}$ offsets are double the exposure time to compensate for vignetting. We then proceed to test PEAKXD at offsets of $+/-0.5$, $+/-1.0$ and $+/-1.5^{\prime \prime}$

The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
(HV+ACQ/PEAKXD TEST G130M (03)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.
(HV+ACQ/PEAKXD TEST G130M (03)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/IMAGE.
g
(HV+ACQ/PEAKXD TEST G130M (03)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/PEAKXD TEST G130M (03)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/PEAKXD TEST G130M (03)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G130M (03)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/PEAKXD
-
HV+ACQ/PEAKXD TEST G130M (03)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G130M (03)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G130M (03)) Warning (Form): COS ACQ/PEAKXD exposure should be followed by an ACQ/PEAKD exposure in the Visit.
(HV + ACQ/PEAKXD TEST G130M (03)) Warning (Orbit Planner): VISIBILITY OVERRUN

Proposal 12797 - HV+ACQ/PEAKXD TEST G130M (03) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797 - HV+ACQ/PEAKXD TEST G130M (03) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd..

Comments: Special Commanding to overwrite the G130M/1309 settings with the SLP focus position. FENA3 Results +290

The SCR 344 FSW has the following focus G130M positions,
const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] =
$\left\{\{0,1055,8095,-170,2750,7402\}, /^{*}\right.$ G130M, OSM1 */
$\{0,1096,8078,-170,2665,7312\}, / *$ G130M, OSM1 */
[0, 1291, 7999, -170, 2259, 6898\}, /* G130M, OSM1 */
(0, 1309, 7991, 170, 2218, 6857). /* G130M, OSM1 */
\{0, 1318, 7987, 340, 2198, 6837), /* G130M, OSM1 */ $\{0,1327,7983,511,2177,6816\}, / *$ G130M, OSM1 */
4 G130M - B (1) AZV18 COS/FUV, TIME-TAG PSA

ASELINE S
PECTRUM
(COS.sp. 360
698)

COS/FUV, TIME-TAG, PSA
G130M
1309 A
BUFFER-TIME=
$0 ;$
FP-POS=3;

FLASH=S0200D03
${ }_{6}{ }_{6}^{\text {FL }}$

Sequence 1-12 Non-I	202 Secs	
nt in HV+ACQ/PEA	K==>]	
KXD TEST G130M		
(03)		

Comments: Spectrum of source to define correct location of star when it is centered using NUV ACQ/IMAGE. COS.sp. 360698 gives S/N/RE $=10$ in 182 seconds, BT=2/3*986 or ~ 630.

5		G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	```BUFFER-TIME=60 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE```	POS TARG null,-1.6	Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G130M (03)	200 Secs	[1]
		OSTARG + SPECTRU		1309 A				[==>]	
		M1							
		(COS.sa. 360							
		701)							
econds, since it is heavily vignetted. We FLASH just to make sure the target is not drifting in raw coordinates due to thermal variations.									
6		G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60 0; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG null,-1.1	Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G130M (03)	150 Secs	[1]
		OSTARG + SPECTRU		1309 A				[==>]	
		$\begin{aligned} & \text { M2 } \\ & \text { (COS.sa. } 360 \end{aligned}$							
		701)							
Comments: POSTARG TO Move to $Y=-1.1^{\prime \prime}$. S/N $=60$ is reached in 2 seconds. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for 150 seconds, since are >40\% vignetted.									
7		G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	$\begin{aligned} & \text { BUFFER-TIME=30 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES; } \\ & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$	POS TARG null,-0.6	Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G130M (03)	100 Secs	[1]
		$\begin{aligned} & \text { OSTARG + } \\ & \text { SPECTRU } \end{aligned}$		1309 A				[==>]	
		M3							
		$\begin{aligned} & \text { (COS.sa. } 360 \\ & 701 \text {) } \end{aligned}$							
Comments: POSTARG TO Move to $Y=-0.6^{\prime \prime}$. S/N $=60$ is reached in 2 seconds. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for 100 seconds.									
8		G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG null,-0.3	Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G130M (03)	100 Secs	[1]
		OSTARG + SPECTRU		1309 A				[==>]	
		M4 (COS sa 360							

 econds.

 conds.

10	G130M - P	(1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60	POS TARG null, 0.6	Sequence 1-12 Non-I	100 Secs	
	OSTARG +			1309 A			nt in $\mathrm{HV}+\mathrm{ACQ} / \mathrm{PEA}$ KXD TEST G130M	[==>]	
	$\begin{aligned} & \text { SPE } \\ & \text { M6 } \end{aligned}$				FP-POS=3;		KXD TEST G130M (03)		
	(COS.sa. 360				FLASH=YES;				[1]
	701)				LIFETIME-POS=A LTERNATE				

 conds.

11	G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60 POS TARG null, 1.1$0 ;$FP-POS=3;FLASH=YES;LIFETIME-POS=ALTERNATE		Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G130M (03)	150 Secs	[1]
	OSTARG + SPECTRU		1309 A			[==>]		
	M7							
	(COS.sa. 360							
	701)							
Comments: POSTARG TO Move to $Y=1.1$. $S / N=60$ is reached in 2 seconds. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for 150 se conds, since are $>40 \%$ vignetted.								
12	G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	BUFFER-TIME=60 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG null, 1.6	Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G130M (03)	200 Secs	[1]
	OSTARG + SPECTRU						[==>]	
	(COS.sa. 360							
	701)							

 econds, since it is heavily vignetted.

 ce.

14	G130M - B (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60	Sequence 13-27 Non	150 Secs	
	ASELINE S		1309 A		-Int in HV+ACQ/PE	[==>]	
	$\begin{aligned} & \text { PECTRUM } \\ & \text { (COS.sp. } 360 \end{aligned}$			FP-POS=3;	AKXD TEST G130	[-ニメ]	
	698)			FLASH=YES;			[2]
				$\begin{aligned} & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$			
Comments: Spectrum of source to test previous ACQ/PEAKXD centering. COS.sp. 360698 gives S/N/RE $=10$ in 182 seconds, $B T=2 / 3 * 986$ or ~ 630.							
15	$\begin{array}{ll} \text { G130M -PE } & \text { (10) AZV18-OFFSE } \\ \text { AKXD- XD } & \text { T-XD+1.0 } \\ \text { +1.0 } & \\ \text { (COS.sa. } 360 \\ \text { 701) } \end{array}$	COS/FUV, ACQ/PEAKXD, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	LIFETIME-POS=A LTERNATE	Sequence 13-27 Non -Int in HV+ACQ/PE AKXD TEST G130 M (03)	10 Secs	
						[==>]	
							[2]

 equence.

16	```G130M - B (10) AZV18-OFFSE ASELINE S T-XD+1.0 PECTRUM (COS.sp. 360 698)```	COS/FUV, TIME-TAG, PSA	G130M 1309 A	BUFFER-TIME=60 0; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	Sequence 13-27 Non -Int in HV+ACQ/PE AKXD TEST G130 M (03)	150 Secs $[==>]$	[2]
Comments: Spectrum of source to test previous ACQ/PEAKXD centering. COS.sp. 360698 gives S/N/RE $=10$ in 182 seconds, $B T=2 / 3 * 986$ or ~ 630.							
17	$\begin{aligned} & \text { G130M - PE (1) AZV18 } \\ & \text { AKXD-XD- } \\ & \text { 1.0 } \\ & \text { (COS.sa. } 360 \\ & 701 \text {) } \end{aligned}$	COS/FUV, ACQ/PEAKXD, PSA	G130M 1309 A	LIFETIME-POS=A LTERNATE	Sequence 13-27 Non -Int in HV+ACQ/PE AKXD TEST G130 M (03)	10 Secs	
						[==>]	[2]

Comments: ACQ/PEAKKD, back on original target, now -1.0" offset. This exposure and the next should be considered a NON-INT sequence.

Proposal 12797 - HV+ACQ/PEAKXD TEST G130M (03) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797 - HV+ACQ/PEAKXD TEST G130M (03) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797 - HV+ACQ/PEAKXD TEST G130M (03) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797 - HV+ACQ/PEAKXD TEST G130M (03) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797 - HV+ACQ/PEAKXD TEST G130M (03) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797, HV+ACQ/PEAKXD TEST G160M (04), completed

Diagnostic Status: Warning

cientific Instruments: COS/NUV, S/C, COS/FUV
pecial Requirements: SCHED 100\%; SAME ORIENT AS 03; BETWEEN 13-JUN-2012 AND 27-JUN-2012
 $0.5,+/-1.0$ and $+/-1.5$

The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
(HV+ACQ/PEAKXD TEST G160M (04)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G160M (04)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.
(HV+ACQ/PEAKXD TEST G160M (04)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/PEAKXD TEST G160M (04)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G160M (04)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/PEAKXD TEST G160M (04)) Warning (Form): COS ACQ/PEAKXD exposure should be followed by an ACQ/PEAKD exposure in the Visit.
(HV+ACQ/PEAKXD TEST G160M (04)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/IMAGE
(HV+ACQ/PEAKXD TEST G160M (04)) Warning (Form): If the target coordinates are not known to 0.4 " (or better) an ACQ/SEARCH should precede the ACQ/PEAKXD
(HV+ACQ/PEAKXD TEST G160M (04)) Warning (Orbit Planner): VISIBILITY OVERRUN

Proposal 12797 - HV+ACQ/PEAKXD TEST G160M (04) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

$\#$	Name	Target Coordinates	Targ.
(1)	AZV18	RA: $004712.1700(11.8007083 \mathrm{~d})$	Proper
		Dec: $-730632.68(-73.10908 \mathrm{~d})$	Proper
	Equinox: J2000	Epoch	
Comments: B2Ia, Magellanic Clouds. Nominal ETC exposure times from spectrum supplied by D.			
NUV, MIRRORA, BOA: 27s (COS.ta.360711)			
FUV, G130M, 1309, PSA: 2s (COS.sa.360701) \& 182s S/N=10 spectroscopy (COS.sp.360698)			
FUV, G140L, 1105: 038s S/N=10 spectroscopy (COS.sp. 389720$)$			
FUV, G160M, 1600: 0215s S/N=10 spectroscopy (COS.sp.389715)			

(5)	AZV18-OFFSET-$\mathrm{XD}+0.5$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+0.5)
		RA Offset: -1.25876E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS
		Dec Offset: 0.211309 Arcsec		

Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
AZV18 offset for ACQ/PEAKXD
$(A D, X D)=\left(0,-0.5^{\prime \prime}\right)=-0.5^{\prime \prime} @ 25^{\circ} S$ of E
$R A=-0.5^{\prime \prime *} \cos \left(25^{\circ}\right)=-0.453154^{\prime \prime}=-0.000125876^{\circ}$
$D E C=0.5^{\prime *} \sin \left(25^{\circ}\right)=0.211309^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A\left({ }^{\prime \prime}\right) D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
Fixed Targets
-0.9060.423-2.51752E-04
-1.3590.634-3.77628E-04
(10) AZV18-OF

XD+1.0
Offset from AZV18 by
RA Offset: $-2.51752 \mathrm{E}-4$ Degrees
Dec Offset: 0.422618 Arcsec
$\mathrm{V}=12.48$
Offset Position (AZV18-OFFSET-XD+1.0)

Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is $250+/-2.5 d$ (visits 3-5)
AZV18 1.0" offset for ACQ/PEAKD $\left(0,-1.0^{\prime \prime}\right)=-1 " @ 25^{\circ} S$ of E
$R A=-1.0^{\prime \prime *} * \cos \left(20^{\circ}\right)=-0.906308^{\prime \prime}=-0.000251752^{\circ}$
$D E C=1.0^{\prime \prime *} \sin \left(20^{\circ}\right)=0.422618^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the -0.5, -1.0, \& -1.5 offsets
$R A\left({ }^{\prime \prime}\right) D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
-0.9060.423-2.51752E-04

(15)	AZV18-OFFSET-$\mathrm{XD}+1.5$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+1.5)
		RA Offset: -3.77628E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS
		Dec Offset: 0.633927 Arcsec		

Comments: This target is offset $1.0^{\prime \prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
AZV18 1.5" offset for ACQ/PEAKD
(0,-1.5")=-1.5"@ $25^{\circ} S$ of E
$R A=-1.5^{\prime \prime *} \cos \left(20^{\circ}\right)=-1.35946=-0.000377628^{\circ}$
$D E C=1.5^{\prime \prime *} \sin \left(20^{\circ}\right)=0.633927^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A(") D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
0.4530.21-1.25876E-04
. 3590.63 - 37628 E .

Proposal 12797 - HV+ACQ/PEAKXD TEST G160M (04) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

\#	$\begin{array}{ll} \begin{array}{l} \text { Label } \\ \text { (ETC Run) } \end{array} & \text { Target } \\ \hline \end{array}$	Config,Mode,Aperture	Spectral Els.	Opt. Params.	Special Reqs.	Groups	Exp. Time/[Actual Dur.]	Orbit
1	FUV HV R DARK AMPUP (16 7/163)	S/C, DATA, NONE			SAA CONTOUR 31; SPEC COM INSTR ELHLTHVF; GS ACQ SCENARI O BASE1BN3; QASISTATES COS FUV HVLOW HVN OM; QESIPARM ENDC TSA 167; QESIPARM ENDC TSB 163	Sequence 1-12 Non-I nt in $\mathrm{HV}+\mathrm{ACQ} / \mathrm{PEA}$ KXD TEST G160M (04)	418 Secs $[==>]$	[1]
The special commanding here sets the the nominal high voltage for this visit (HVNOM) for segments A and B (ENDCTSA and ENDCTS B) to 167 and 163, respectively. 403 s is the correct rampup time for 162/159. n allow 3 additional seconds for every positive unit of offset is required. Therefore, the rampup time is $403+(167-162) * 3=418$								
	$\begin{aligned} & 2 \text { nuv a/im (1) AZV18 } \\ & \text { (COS.ta. } 360 \\ & \text { 711) } \end{aligned}$	COS/NUV, ACQ/IMAGE, BOA	MIRRORA			Sequence 1-12 Non-I nt in $\mathrm{HV}+\mathrm{ACQ} / \mathrm{PEA}$ KXD TEST G160M (04)	30 Secs [==>]	[1]
Comments: NUV ACQ/IMAGE with BOA+MIRRORA to refine centering. (COS.ta. 360711 gives S/N $=60$ in 27 s)								
3	S/C to updat DARK e the G160 M/1600 focu s from -44 to $+116(+160)$	S/C, DATA, NONE			SPEC COM INSTR ELOSMPATCH; QESIPARM ACTIO N REPLACE; QESIPARM GRATI NG G160M; QESIPARM CENT WAVE 1600; QESIPARM FOCUS 116	Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G160M (04)	8 Secs [= = > $]$	[1]

Comments: Special Commanding to overwrite the G160M/1600 settings with the SLP focus position. FENA3 Results suggest we +116.

The SCR 344 FSW has the following focus G160M positions,
const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] =
$\{2,1577,11203,-384,18693,23323\}, \quad / *$ G160M, OSM1 */
\{2, 1589, 11199,-214, 18671, 23301\}, /* G160M, OSM1 */
\{2, 1600, 11195, -44, 18651, 23281\}, /* G160M, OSM1 */
\{2, 1611, 11191, 126, 18631, 23261\}, /* G160M, OSM1 */
$\{2,1623,11187,296,18609,23239\}, \quad / *$ G160M, OSM1 */

Proposal 12797 - HV+ACQ/PEAKXD TEST G160M (04) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

 H just to make sure the target is not drifting in raw coordinates due to thermal variations.

8	G160M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G160M } \\ & 1600 \mathrm{~A} \end{aligned}$	BUFFER-TIME=40$0 ;$FP-POS=3;FLASH=YES;LIFETIME-POS=ALTERNATE	POS TARG null,-0.3	Sequence 1-12 Non-I nt in $\mathrm{HV}+\mathrm{ACQ} / \mathrm{PEA}$ KXD TEST G160M (04)	95 Secs	
	OSTARG + ${ }_{\text {SPECTRU }}+$						[==>]	
	$\begin{aligned} & \text { SPECTRU } \\ & \mathrm{M} 4 \end{aligned}$							
	(COS.sp. 389							[1]
	715)							

 ASH just to make sure the target is not drifting in raw coordinates due to thermal variations.

9	G160M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=4 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG null,0.3	Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G160M (04)	95 Secs	[1]
	OSTARG + SPECTRU		1600 A				[==>]	
	$\begin{aligned} & \text { SPE } \\ & \text { M } \end{aligned}$							
	$\text { (COS.sp. } 389$							
Comments: POSTARG TO Move to $Y=0.3 . S / N=60$ in 4-6s. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for 100 seconds. We FLAS H just to make sure the target is not drifting in raw coordinates due to thermal variations.								
	G160M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=40 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG null,0.6	Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G160M (04)	95 Secs	[1]
	OSTARG + SPECTRU		1600 A				[==>]	
	M6							
	$\begin{aligned} & \text { (COS.sp. } 389 \\ & 715 \text {) } \end{aligned}$							
Comments: POSTARG TO Move to $Y=0.6$. S/N $=60$ in 4-6s. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for ~ 100 seconds. We FLA SH just to make sure the target is not drifting in raw coordinates due to thermal variations.								
11	G160M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G160M	$\begin{aligned} & \text { BUFFER-TIME=40 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES; } \\ & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$	POS TARG null,1.1	Sequence 1-12 Non-I nt in HV+ACQ/PEA KXD TEST G160M (04)	140 Secs	[1]
	OSTARG + SPECTRU		$1600 \mathrm{~A}$				[==>]	
	$\text { (COS.sp. } 389$							
	715)							
Comments: POSTARG TO Move to $Y=1.1$. S/N $=60$ in $4-6$ s. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for 140 seconds, since it is 40% vignetted, for centered exposures, we'll use 150 seconds. We FLASH just to make sure the target is not drifting in raw coordinates due to thermal variations.								
12	G160M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=40 POS TARG null,1.6 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE		Sequence 1-12 Non-I nt in $\mathrm{HV}+\mathrm{ACQ} / \mathrm{PEA}$ KXD TEST G160M (04)	200 Secs	[1]
	OSTARG + SPECTRU		$1600 \mathrm{~A}$			[==>]		
	$\begin{aligned} & \text { M8 } \\ & \text { (COS.sp. } 389 \end{aligned}$							
	715)							

 heavily vignetted. We FLASH just to make sure the target is not drifting in raw coordinates due to thermal variations.

Comments: COS.sp. 389715 gives S/N/RE=60 in 4-6 seconds. This is on the centered target, so it shouldn't move. This exposure and the next should be considered a NON-INT sequence

 to be safe), due to time constraints, the exposure time has been dropped to 140 s.
15 G160M - PE (10) AZV18-OFFSE COS/FUV, ACQ/PEAKXD, PSA AKXD-XD T-XD+1.0
$+1.0$
G160M LIFETIME-POS=A LTERNATE

10 Secs	
$[==>]$	[2]

715)

Comments: COS.sp. 389715 gives $S / N / R E=60$ in 4-6 seconds. PEAKXD of a target offset by 1.0". This exposure and the next should be considered a NON-INT sequence

Proposal 12797 - HV+ACQ/PEAKXD TEST G160M (04) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

[^0]Proposal 12797 －HV＋ACQ／PEAKXD TEST G160M（04）－Second COS FUV Lifetime Position：FUV Target Acquisition Parameter Upd．

23	G
	A
	7
	7
Comme	

（COS．sp． 389

G160M

15 Secs	
$[==>]$	$[2]$

24 G160M－B（15）AZV18－OFFSE COS／FUV，TIME－TAG，PSA
ASELINE S T－XD＋1．5
PECTRUM
（COS．sp． 389
715 ）

G160M	BUFFER－TIME＝42
1600 A	$0 ;$
	FP－POS＝3；
	FLASH＝YES；
	LIFETIME－POS＝A
	LTERNATE
	We attempt to scale this

Sequence 13－27 Non	140 Secs	
－Int in HV＋ACQ／PE		
AKXD TEST G160		
M（04）		

 to be safe），due to time constraints，the exposure time has been dropped to 140 s ．

G160M－B（1）AZV18	COS／FUV，TIME－TAG，PSA	G160M	BUFFER－TIME＝42	Sequence 13－27 Non	140 Secs	
ASELINE S		1600 A		－Int in HV＋ACQ／PE	［＝＝＞］	
PECTRUM （COS．sp． 389			FP－POS＝3；	AKXD TEST G160	［ーニン］	
715）			FLASH＝YES；			［2］
			LIFETIME－POS＝A LTERNATE			

 to be safe），due to time constraints，the exposure time has been dropped to 140 s

27 S／C to reset t DARK
 he G160M／1

600 focus
S／C，DATA，NONE
SPEC COM INSTR ELOSMPATCH；

Sequence $13-27$ Non
－Int in HV＋ACQ／PE
AKXD TEST G160 QESIPARM ACTIO AKXD TEST G160 N REPLACE；\quad M（04）
QESIPARM GRATI
NG G160M；
QESIPARM CENT
WAVE 1600；
QESIPARM FOCUS
－44

8 Secs	
$[==>]$	
	$[2]$

Comments：Special Commanding to RESET the G160M／1600 settings to the nominal position（－44）．
The SCR 344 FSW has the following focus G160M positions，
const pcmech＿OSM＿position＿table＿struct pcmech＿OSMTbl［MECH＿OSM＿TABLE＿SIZE］$=$

$\{2,1577,11203,-384,18693,23323\}$,	$/ *$ G160M，OSM1＊／
$\{2,1589,11199,-214,18671,23301\}$,	／＊G160M，OSM1＊／
$\{2,1600,11195,-44,18651,23281\}$,	／＊G160M，OSM1＊／
$\{2,1611,11191,126,18631,23261\}$,	／＊G160M，OSM1＊／
$\{2,1623,11187,296,18609,23239\}$,	／＊G160M，OSM1＊／

Proposal 12797 - HV+ACQ/PEAKXD TEST G160M (04) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

28	$8 \begin{aligned} & \text { HV_RAMP } \\ & \text { DOWN_TO } \\ & \\ & \\ & \text { HVLOW }\end{aligned}$ HVLOW	S/C, DATA, NONE	NEW OBSET; QASISTATES COS FUV HVLOW HVL OW; QASISTATES COS SI OBSERVE OBSE RVE	1 Secs	[3]
				1 1 Secs ${ }^{\text {l }}$	
Comments: SQL required for qexposure to specify the si_used = "COS".					
	w obset SR necessary to	ure to be the very las			

Proposal 12797 - HV+ACQ/PEAKXD TEST G160M (04) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797 - HV+ACQ/PEAKXD TEST G160M (04) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797 - HV+ACQ/PEAKXD TEST G160M (04) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797, HV+ACQ/PEAKXD TEST G140L (05), completed

Diagnostic Status: Warning

Scientific Instruments: COS/NUV, S/C, COS/FUV
Special Requirements: SCHED 100\%; SAME ORIENT AS 03; BETWEEN 13-JUN-2012 AND 27-JUN-2012
 for vignetting.

The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
Note that this visit should only proceed after the April/May 2012 SIAF file update ($A D=A D-0.1^{\prime \prime}$) as the first exposures are designed to test any SIAF changes in the dispersion direction.
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Form): COS ACQ/PEAKD exposure should be preceded by an ACQ/PEAKXD exposure in the Visit.
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/IMAGE.
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.
HV+ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Form): COS ACQ/PEAKXD exposure should be followed by an ACQ/PEAKD exposure in the Visit
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): VISIBILITY OVERRUN
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/PEAKXD.
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(HV+ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE

Proposal 12797 - HV+ACQ/PEAKXD TEST G140L (05) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

$\#$	Name	Target Coordinates	Targ.
(1)	AZV18	RA: $004712.1700(11.8007083 \mathrm{~d})$	Proper
	Dec: $-730632.68(-73.10908 \mathrm{~d})$	Proper	
	Equinox: J2000	Epoch	
Comments: B2Ia, Magellanic Clouds. Nominal ETC exposure times from spectrum supplied by D			
NUV, MIRRORA, BOA: 27s (COS.ta.360711)			
FUV, G130M, 1309, PSA: 2s (COS.sa.360701) \& 182s S/N=10 spectroscopy (COS.sp.360698)			
FUV, G140L, 1105: 038s S/N=10 spectroscopy (COS.sp.389720)			
FUV, G160M, 1600:0215s S/N=10 spectroscopy (COS.sp.389715)			

(5)	AZV18-OFFSET-$\mathrm{XD}+0.5$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+0.5)
		RA Offset: -1.25876E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS
		Dec Offset: 0.211309 Arcsec		

Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
AZV18 offset for ACQ/PEAKXD
$(A D, X D)=\left(0,-0.5^{\prime \prime}\right)=-0.5^{\prime \prime} @ 25^{\circ} S$ of E
$R A=-0.5^{\prime \prime *} \cos \left(25^{\circ}\right)=-0.453154^{\prime \prime}=-0.000125876^{\circ}$
$D E C=0.5^{\prime *} \sin \left(25^{\circ}\right)=0.211309^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A\left({ }^{\prime \prime}\right) D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
Fixed Targets
-0.9060.423-2.51752E-04
-1.3590.634-3.77628E-04
(10) AZV18-O

XD+1.0
Offset from AZV18 by
RA Offset: $-2.51752 \mathrm{E}-4$ Degrees
Dec Offset: 0.422618 Arcsec
$\mathrm{V}=12.48$
Offset Position (AZV18-OFFSET-XD+1.0)

Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is $250+/-2.5 d$ (visits 3-5)
AZV18 1.0" offset for ACQ/PEAKD (0,-1.0")=-1"@ $25^{\circ} S$ of E
$R A=-1.0^{\prime \prime *} * \cos \left(20^{\circ}\right)=-0.906308^{\prime \prime}=-0.000251752^{\circ}$
$D E C=1.0^{\prime \prime *} \sin \left(20^{\circ}\right)=0.422618^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the -0.5, -1.0, \& -1.5 offsets
$R A\left({ }^{\prime \prime}\right) D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
-0.9060.423-2.51752E-04

(15)	AZV18-OFFSET-$\mathrm{XD}+1.5$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+1.5)
		RA Offset: -3.77628E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS

Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
AZV18 1.5" offset for ACQ/PEAKD
(0,-1.5")=-1.5"@ $25^{\circ} S$ of E
$R A=-1.5^{\prime \prime *} \cos \left(20^{\circ}\right)=-1.35946=-0.000377628^{\circ}$
$D E C=1.5^{\prime \prime *} \sin \left(20^{\circ}\right)=0.633927^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A(") D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
0.4530.21-1.25876E-04

- 3590 634-3 77628E-04

Proposal 12797 - HV+ACQ/PEAKXD TEST G140L (05) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

$\#$	Label (ETC Run)	Target	Config,Mode,Aperture
1	FUV HV R AMPUP (16 $7 / 163)$	DARK	S/C, DATA, NONE
Comments: SQL required for qexposure to specify the si_used $=$ "COS".			

 n allow 3 additional seconds for every positive unit of offset is required. Therefore, the rampup time is $403+(167-162) * 3=418$

2		2 nuv a/im	(1) AZV18	COS/NUV, ACQ/IMAGE, BOA	MIRRORA	Sequence 1-17 Non-I nt in $\mathrm{HV}+\mathrm{ACQ} / \mathrm{PEA}$	30 Secs
		(COS.ta. 360					[==>]
		711)				KXD TEST G140L (l==>]

Comments: NUV ACQ/IMAGE with BOA+MIRRORA to refine centering. (COS92525 gives $S / \mathrm{N}=40$ in 14.5 s)
S/C to updat DARK e the G130
M/1309 focu
s from 170 t
o $290(+120$
)

SPEC COM INSTR	Sequence 1-17 Non-I	8 Secs	
ELOSMPATCH;	nt in HV+ACQ/PEA		
QESIPARM ACTIO	KXD TEST G140L $($	05)	
N REPLACE;			
QESIPARM GRATI			
NG G130M;			
QESIPARM CENT			
WAVE 1309;			
QESIPARM FOCUS			
290			

 +290

The SCR 344 FSW has the following focus G130M positions.
const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] =
\{ $\{0,1055,8095,-170,2750,7402\}, / *$ G130M, OSM1 *
$\{0,1096,8078,-170,2665,7312\}, \quad / *$ G130M, OSM1 */
\{0, 1291, 7999, -170, 2259, 6898\}, /* G130M, OSM1 */
\{0, 1300, 7995, 0, 2238, 6877\}, /* G130M, OSM1 */
\{0, 1309, 7991, 170, 2218, 6857\}, /* G130M, OSM1 */
0, 1327, 7983, 511, 2177, 68376\}, /* G130M, OSM1 */

Proposal 12797 - HV+ACQ/PEAKXD TEST G140L (05) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

4		(1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60	Sequence 1-17 Non-I	212 Secs	
				1309 A	$0 ;$	nt in HV+ACQ/PEA KXD TEST G140L ([==>]	
					FP-POS $=3$;	05		
					$\begin{aligned} & \text { FLASH=S0200D03 } \\ & 6 ; \end{aligned}$			[1]
					WAVECAL=YES;			
					LIFETIME-POS=A LTERNATE			
Comments: Spectrum of source to define correct location of star when it is centered in NUV (COS.sp.360698). $B T=986 *(2 / 3)=\sim 630$. This will get us S/N~10 per RE in 182 s. This exposure and the next 8 should be co nsidered an NON-INT Sequence. 36s lamp flash								
The actual count rate from Visit 1 was 0.07-0.14 counts/s/column, or a total count rate of $\sim 1-2000$ counts/segment/second. In 180s, we obtained $75-150$ counts/RE or S/N of 8-12 as expected.								
		G130M - A (1) AZV18	COS/FUV, ACQ/PEAKD, PSA	G130M	NUM-POS=9;	Sequence 1-17 Non-I	4 Secs	
		CQ/PEAKD (COS.sa. 360		$1309 \mathrm{~A}$	STEP-SIZE=0.4;	nt in HV+ACQ/PEA	[==>]	
		701)			LIFETIME-POS=A LTERNATE	05)		[1]
Comments: ACQ/PEAKD of a centered target on the same 9x0.4" pattern. . $S / N=60$ is reached in 2 seconds. This exposure and the next should be considered a NON-INT sequence.								
6		G130M/130 (1) AZV18	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=60 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=S0200D03 } \\ & 6 ; \\ & \text { WAVECAL=YES; } \\ & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$	Sequence 1-17 Non-I nt in HV+ACQ/PEA KXD TEST G140L (05)	212 Secs	
		9 - CONFIR MATION S					[==>]	
		PECTRUM						
		$\begin{aligned} & \text { (COS.sp. } 360 \\ & 698 \text {) } \end{aligned}$						[1]

 nsidered an NON-INT Sequence. 36s lamp flash

The actual count rate from Visit 1 was 0.07-0.14 counts/s/column, or a total count rate of $\sim 1-2000$ counts/segment/second. In 180s, we obtained $75-150$ counts/RE or S/N of $8-12$ as expected.

Comments: Special Commanding to overwrite the G140L/1280 settings with the SLP focus position. Analysis of 12796 data indicate a move of -165 is appropriate for the G140L

The SCR 344 FSW has the following focus G140L positions
const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] =

```
1, 1105, 1598, -370, 35092, 39716}, -* G140L, OSM1 */-> -535
1, 1230, 1591, -30, 35055, 39680}, /* G140L, OSMI */ -> -195
{1, 1280, 1590, 19, 35050, 39675}, /* G140L,OSM1 */-> -146
```


 decent look at the spectrum, so we'll observe for 20 seconds

G140L - PO (1) AZV18	COS/FUV, TIME-TAG, PSA	G140L	BUFFER-TIME=40	POS TARG null,-0.3	Sequence 1-17 Non-I	20 Secs	
STARG + S		1280 A	0 ;		nt in HV+ACQ/PEA	[==>]	
${ }_{4}$ PECTRUM		1280 A	FP-POS=3;		KXD TEST G140L (05)	l=->]	
(COS.sp. 389			FLASH=YES;				[1]
720)			LIFETIME-POS=A LTERNATE				

 decent look at the spectrum, so we'll observe for 20 seconds

Proposal 12797 - HV+ACQ/PEAKXD TEST G140L (05) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd..

13	G140L - PO (1) AZV18	COS/FUV, TIME-TAG, PSA	G140L	BUFFER-TIME=40 POS TARG null, 0.3$0 ;$		Sequence 1-17 Non-I nt in HV+ACQ/PEA KXD TEST G140L (05)	20 Secs		
	STARG + S PECTRUM		1280 A			[==>]			
	$\begin{aligned} & \mathrm{PH} \\ & 5 \end{aligned}$			FP-POS=3;					
	(COS.sp. 389			FLASH=YES;				[1]	
	720)			LIFETIME-POS=A LTERNATE					
Comments: POSTARG TO Move to $Y=0.3^{\prime \prime}$. COS.sp. 389720 gives Count rate Segment $A=2,312.100 * 0.75=1734 . S / N=60$ in $2-3 \mathrm{~s}$. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for 20 seconds.									
14	G140L - PO (1) AZV18	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G140L } \\ & 1280 \mathrm{~A} \end{aligned}$	BUFFER-TIME=40 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG null,0.6		Sequence 1-17 Non-I nt in HV+ACQ/PEA KXD TEST G140L (05)	20 Secs	
	STARG + S PECTRUM					[==>]			
	6								
	$\begin{aligned} & \text { (COS.sp. } 389 \\ & 720 \text {) } \end{aligned}$							[1]	

 decent look at the spectrum, so we'll observe for 20 seconds.

15	G140L - PO (1) AZV18	COS/FUV, TIME-TAG, PSA	G140L	BUFFER-TIME=40	POS TARG null,1.1	Sequence 1-17 Non-I	30 Secs	
	STARG + S		$1280 \mathrm{~A}$	$0 ;$		nt in HV+ACQ/PEA	[==>]	
	PECTRUM 7			FP-POS=3;		KXD TEST GI40L 05)		
	(COS.sp. 389			FLASH=YES;				[1]
	720)			LIFETIME-POS=A LTERNATE				

 decent look at the spectrum, so we'll observe for 20 seconds.
However, since it is heavily vignetted we double the exposure time to 30s for the +/-1.1".

 cent look at the spectrum, so we'll observe for 20 seconds.
However, since it is heavily vignetted we double the exposure time to 45 s for the $+/-1.6^{\prime \prime}$.
We FLASH just to make sure the target is not drifting in raw coordinates due to thermal variations

 INT Sequence.

Proposal 12797 - HV + ACQ/PEAKXD TEST G140L (05) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd..

Proposal 12797 - HV+ACQ/PEAKXD TEST G140L (05) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd..

Proposal 12797 - HV+ACQ/PEAKXD TEST G140L (05) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797 - HV+ACQ/PEAKXD TEST G140L (05) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.
Orbit 1

Proposal 12797 - HV+ACQ/PEAKXD TEST G140L (05) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Upd.

Proposal 12797 - Verification Visit @ Second Lifetime Position (06) - Second COS FUV Lifetime Position: FUV Target Acquisition Par..

Proposal 12797, Verification Visit @ Second Lifetime Position (06), completed
 Wed Jul 25 01:38:36 GMT 2012
 Diagnostic Status: Warning

$\stackrel{\pi}{\circ}$
Scientific Instruments: COS/NUV, COS/FUV
pecial Requirements: ORIENT 132.5D TO 137.5 D; BETWEEN 23-JUL-2012 AND 30-JUL-2012
 we will need to change the roll angle and redefine the targets. We now start with a G130M PEAKXD to see if the SIAF file is off in the XD.

THIS VISIT MUST BE EXECUTED AFTER THE MOVE TO THE NEW (SECOND) LIFETIME POSITON (the POSITION=ALTERNATEs should all have been stripped out along with the focus adjustments).

(Verification Visit @ Second Lifetime Position (06)) Warning (Form): If the target coordinates are not known to 0.4" (or better) an ACQ/SEARCH should precede the ACQ/PEAKXD

(Verification Visit @ Second Lifetime Position (06)) Warning (Form): If the target coordinates are not known to 0.4" (or better) an ACQ/SEARCH should precede the ACQ/IMAGE.

\#	Name	Target Coordinates	Targ. Coord. Corrections	Fluxes	Miscellaneous
(2)	WD1657+343	RA: 165851.1200 (254.7130000d)	Proper Motion RA: $12 \mathrm{mas} / \mathrm{yr}$	$\mathrm{V}=16.4+/-0.1$	Reference Frame: ICRS
		Dec: +34 1853.30 (34.31481d)	Proper Motion Dec: -32 mas/yr		
		Equinox: J2000	Epoch of Position: 2000		
			Radial Velocity: $78 \mathrm{~km} / \mathrm{sec}$		

Comments: This object is visible all year. The roll angle for the offsets is set to 180+/-2.5 (Jun 5-12, 2012)
Proper Motions from 2008ApJS..175..297A and are [12,-32] mas/yr.
The original proposal used [0.0014 sec of time/yr, -0.0342 "/yr].
ICRS coord. $($ ep $=J 2000): 165851.12+341853.3$
The secondary target used is WD1657+343 and the exposure times are based on a spectrum provided by A. Aloisi (extrapolated in wavelength). The nominal exposure time For BOA/MIRRORB/NUV imaging the time is 98s (COS.ta.389915) For PSA/G140L/1280, we get S/N=60 in 40 sec (COS.sa. 389908).
For PSA/G160M/1600, we get $S / N=60$ (Seg A) in 11 sec (COS.sa.389907)
NW-1.4AS \quad RA Offset: 2.77778E-4 Degrees

Dec Offset: -1.0 Arcsec
Radial Velocity: $78 \mathrm{~km} / \mathrm{sec} \quad \mathrm{V}=16.4+/-0.1$
$V=16.4+/-0.1$

Offset Position (WD1657+343-OFFSET-NW-1.4AS)
Reference Frame: ICRS

Comments: The new roll angle is set to $135+/-2.5$. This target is offset 1 " in $-X,+Y$ or delta $[A D, X D]=(1,-1)^{\prime \prime}$
WD1657+343 offset for ACQ Sequence for a roll angle of $135+/-2.5$
$(A D, X D)=\left(0,-1.0^{\prime \prime}\right)=1 " @ 45^{\circ}$ E of N
$R A=+\operatorname{sqrt}(2)^{\prime * *} \cos \left(45^{\circ}\right)=+1 "=0.00027777778^{\circ}$
$R A=+\operatorname{sqrt}(2) * \cos \left(45^{\circ}=+1^{\prime \prime}\right.$
$D E C=-\operatorname{sqrt}(2)^{\prime *} \sin \left(45^{\circ}\right)=-1^{\prime \prime}$

(22)	$\begin{aligned} & \text { WD1657+343-OFFSET- } \\ & \text { XD-1.0 } \end{aligned}$	Offset from WD1657+343 by RA Offset: 0.0 Degrees	Radial Velocity: $78 \mathrm{~km} / \mathrm{sec}$	$\mathrm{V}=16.4+/-0.1$	Offset Position (WD1657+343-OFFSET- XD-1.0)

Rec Offer: 1.0 Arsec
Reference Frame: ICRS
Comments: The new roll angle is set to $135+/-2.5$. This offset is $1^{\prime \prime}$ in $-Y(X D)$
WD1657+343 offset for ACQ/PEAKXD
$(A D, X D)=\left(0,1.0^{\prime \prime}\right)=1^{\prime \prime}$ to the S
$(A D, X D)=\left(0,1.0^{\prime \prime}\right)=$
$R A=0, D E C=+1.0^{\prime \prime}$

Proposal 12797 - Verification Visit @ Second Lifetime Position (06) - Second COS FUV Lifetime Position: FUV Target Acquisition Par..

\#	Label (ETC Run)	Target	Config,Mode,Aperture	Spectral Els.	Opt. Params.	Special Reqs.	Groups	Exp. Time/[Actual Dur.]	Orbit
1	$\begin{aligned} & 2 \text { nuv a/im } \\ & \text { (COS.ta. } 389 \\ & \text { 915) } \end{aligned}$	(2) WD1657+343	COS/NUV, ACQ/IMAGE, BOA	MIRRORA		$\begin{aligned} & \text { GS ACQ SCENARI } \\ & \text { O BASE1BN3 } \end{aligned}$		98 Secs	
								[==>]	[1]

Comments: NUV ACQ/IMAGE with BOA+MIRRORA to define centering. COS.ta. 389915
Requested Signal/Noise Ratio $=60.000$ gives: Time $=98.1324$ seconds

2	G130M - PE (2) WD1657+343	COS/FUV, ACQ/PEAKXD, PSA	G130M
	AKXD - No		1309 A
	minal		
	(COS.sa. 389		
	905)		

3 Secs	
$[==>]$	$[1]$

Comments: ACQ/PEAKXD at the nominal position to test any SIAF file issue in the XD. The expected count rate on segment A is 1600 counts in $1.16 s$, or about 4500 is 3 s .

Comments: COS.sa. 389910 gives $S / N=60$ in only in 2.6 s, we go for 12 because that is the lamp flash time.
4 G130M - PE (22) WD1657+343- COS/FUV, ACQ/PEAKXD, PSA G130M
AKXD-XD- OFFSET-XD-1.0
1309 A
1.0

COS.sa. 389
905)

Sequence 3-5 Non-In t in Verification Visit @ Second Lifetime @osition (06)	S Secs	
P==>]		

Comments: ACQ/PEAKXD, see previous comment

5	G130M - C	(22) WD1657+343-	COS/FUV, TIME-TAG, PSA	G130M
ONFIRMA	OFFSET-XD-1.0		1309 A	
TION SPEC				
	TRUM			
	(COS.sa. 389			
	$905)$			

BUFFER-TIME=20
$0 ;$
FP-POS=3;

Sequence 3-5 Non-In	20 Secs	
t in Verification Visit	$[==>]$	
@ Second Lifetime		
Position (06)		

Comments: Confirmation spectrum. COS.sa. 389905 Gives $=40.000$ for Segment A only in 1.16 S/N=60 in $3 s$, we go for 20s to get a good look.
The actual count rate from Visit 1 was 0.07-0.14 counts/s/column, or a total count rate of $\sim 1-2000$ counts $/$ segment/second. In 20s, we obtained 8-17 counts/RE

Comments: Confirmation spectrum. COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in 3 s , we go for 20 s to get a good look.

Proposal 12797 - Verification Visit @ Second Lifetime Position (06) - Second COS FUV Lifetime Position: FUV Target Acquisition Par...

Proposal 12797 - Verification Visit @ Second Lifetime Position (06) - Second COS FUV Lifetime Position: FUV Target Acquisition Par..

18	G160M - O (2) WD1657+343	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 18-20 Non	22 Secs	
	FFSET SPE CTRUM (COS.sa. 389 907)		1600 A	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Verification V isit @ Second Lifeti me Position (06)	[==>]	[2]
Comments: Check spectrum location.							
19	G160M - PE (2) WD1657+343	COS/FUV, ACQ/PEAKXD, PSA	G160M		Sequence 18-20 Non	11 Secs	
	$\begin{aligned} & \text { AKXD-XD } \\ & +1.0 \\ & \text { (COS.sa. } 389 \\ & 907 \text {) } \end{aligned}$		$1600 \mathrm{~A}$		-Int in Verification V isit @ Second Lifeti me Position (06)	[==>]	[2]
Comments: ACQ/PEAKXD							
20	G160M - C (2) WD1657+343	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 18-20 Non	22 Secs	
	ONFIRMA TION SPEC TRUM (COS.sa. 389 907)		$1600 \mathrm{~A}$	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Verification V isit @ Second Lifeti me Position (06)	[==>]	[2]
Comments: confirmation spectrum							
21	G160M - O (21) WD1657+343-	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 21-27 Non	22 Secs	
	FFSET SPE OFFSET-NW-1.4AS CTRUM (COS.sa. 389 907)		$1600 \mathrm{~A}$	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Verification V isit @ Second Lifeti me Position (06)	[==>]	[2]
Comments: COS.sa.389907. Gives $S /$ N=60 for Segment A only in 10.8. wo go for $4 x$ that. $B T=2 / 3 * 1,412$ or $\sim 1,000$. We use 700 to be safe.							
22	G160M - A (21) WD1657+343-	COS/FUV, ACQ/SEARCH, PSA	G160M	CENTER=FLUX-W	Sequence 21-27 Non	8 Secs	
	CQ/SEARC OFFSET-NW-1.4AS H on OFFS ET (COS.sa. 389 907)		$1600 \mathrm{~A}$	T-FLR; SCAN-SIZE=3	-Int in Verification V isit @ Second Lifeti me Position (06)	[==>]	[2]
Comments: COS.sa.389907. Gives S/N=60 for Segment A only in 10.8.							
23	G160M - C (21) WD1657+343-	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 21-27 Non	44 Secs	
	ONFIRMA OFFSET-NW-1.4AS TION SPEC TRUM (COS.sa. 389 907)		$1600 \mathrm{~A}$	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Verification V isit @ Second Lifeti me Position (06)	[==>]	[2]
Comments: COS.sa.389907. Gives S/N=60 for Segment A only in 10.8. wo go for $4 x$ that. $B T=2 / 3 * 1,412$ or $\sim 1,000$. We use 700 to be safe.							
24	G160M - A (21) WD1657+343-	COS/FUV, ACQ/PEAKXD, PSA	G160M		Sequence 21-27 Non	11 Secs	
	CQ/PEAKX OFFSET-NW-1.4AS D on OFFS ET (COS.sa. 389 907)		1600 A		-Int in Verification V isit @ Second Lifeti me Position (06)	[==>]	[2]
Comments: COS.sa.389907. Gives $S / N=60$ for Segment A only in 10.8.							
25	G160M - C (21) WD1657+343-	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 21-27 Non	60 Secs	
	ONFIRMA OFFSET-NW-1.4AS TION SPEC TRUM (COS.sa. 389 907)		$1600 \mathrm{~A}$	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Verification V isit @ Second Lifeti me Position (06)	[==>]	[2]

Proposal 12797 - Verification Visit @ Second Lifetime Position (06) - Second COS FUV Lifetime Position: FUV Target Acquisition Par..
on OFFSET

CQ/PEAKD

G160M	NUM-POS $=7 ;$
1600 A	STEP-SIZE $=0.45$

Sequence 21-27 Non
-Int in Verification V
isit @ Second Lifeti

10 Secs	
$[==>]$	$[2]$

Comments: ACQ/PEAKD. COS.sa. 389907
27 G160M-C (21) WD1657+343- COS/FUV, TIME-TAG, PSA
G160M
1600 A
BUFFER-TIME=70
$0 ;$ $0 \begin{aligned} & \text { PO } \\ & 11\end{aligned}$
FP-POS=3;
FLASH=YES

Sequence 21-27 Non	60 Secs
-Int in Verification V	
isit @ Second Lifeti	
me Position (06)	$[==>]$

TION SPEC
TRUM
(COS.sa. 389
907)
[2]

Comments: COS.sa.389907. Gives $S / N=60$ for Segment A only in 10.8. wo go for $4 x$ that. $B T=2 / 3 * 1,412$ or $\sim 1,000$. We use 700 to be safe.

28	G130M - O	(2) WD1657+343	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=20	Sequence 28-32 Non	20 Secs	
	FFSET SPE			1309 A	0 ;	-Int in Verification V	[==>]	
	CTRUM $\text { (COS.sa. } 389$				FP-POS=3;	isit @ Second Lifeti me Position (06)		[2]
	905)				FLASH=YES			

Comments: Baseline spectrum, we last centered 1" off in both XD and AD, so this spectrum should be off center.
COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in $3 \mathrm{~s} . \mathrm{BT}=2 / 3 * 476$
29 G130M - PE (2) WD1657+343 COS/FUV, ACQ/PEAKXD, PSA G130M
AKXD 3891309 A

1309 A
(COS.sa. 389
Sequence 28-32 Non
-Int in Verification V
isit @ Second Lifeti
me Position (06)
3 Secs
905)
D and $X D$, so this is a challenging TA.

Comments: ACQ/PEAKXD. COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in 3 s . The target should be offset by 1 " in both $A D$ and $X D$, so this is a challenging TA.						
30	G130M - C	(2) WD1657+343	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME $=20$	Sequence $28-32$ Non

Comments: ACQ/PEAKD. COS.sa. 389905 Gives $S / N=40$ for Segment A only in $1.2 s, S / N=60$ in $3 s$. The target should be offset by 1 " in both $A D$ and XD, so this is a challenging TA.
32 G130M - C (2) WD1657+343 COS/FUV, TIME-TAG, PSA G130M BUFFER-TIME=20 Sequence 28-32 Non 60 Secs

ONFIRMA	G130M	BUFFER-TIME $=2 ;$
TION SPEC	1309 A	$0 ;$
TRUM		FP-POS=3;
(COS.sa. 389		FLASH=YES

(COS.sa. 38
905)
-Int in Verification V
isit @ Second Lifeti
me Position (06)
[2]

Comments: Confirmation Spectrum on Centered Target. 2x the normal exposure time to check $A D$ centering

Proposal 12797 - Verification Visit @ Second Lifetime Position (06) - Second COS FUV Lifetime Position: FUV Target Acquisition Par..

Orbit 2

Server Version: 20120712
GS Reacy
["여 Exp. 18
Exp. 19
(4․). Exp. 20
Fointing Meneuver
(4.7) Exp. 21
(4)7 Exp. 23

Exp. 24
("in) 3 Exp. 25
Exp. 26
Fointing Mereuver
(4.) Exp. 27

Fointing Mereuver
(-3) Exp. 28
Exp. 29
(4.3) Exp. 32

Unused Visitility $=245$
Home
Exp. 22

L
0

I I
2000

Ocoultation

\#	Name	Target Coordinates	Targ. Coord. Corrections	Fluxes	Miscellaneous
(2)	WD1657+343	RA: 165851.1200 (254.7130000d)	Proper Motion RA: $12 \mathrm{mas} / \mathrm{yr}$	$\mathrm{V}=16.4+/-0.1$	Reference Frame: ICRS
		Dec: +34 1853.30 (34.31481d)	Proper Motion Dec: -32 mas/yr		
		Equinox: J2000	Epoch of Position: 2000		
			Radial Velocity: $78 \mathrm{~km} / \mathrm{sec}$		

Comments: This object is visible all year. The roll angle for the offsets is set to 180+/-2.5 (Jun 5-12, 2012)
Proper Motions from 2008ApJS..175..297A and are [12,-32] mas/yr.
The original proposal used [0.0014 sec of time/yr, -0.0342 "/yr].
ICRS coord. $(e p=J 2000): 165851.12+341853.3$
The secondary target used is WD1657+343 and the exposure times are based on a spectrum provided by A. Aloisi (extrapolated in wavelength). The nominal exposure time For BOA/MIRRORB/NUV imaging the time is 98s (COS.ta.389915)
$\stackrel{9}{6}$ For PSA/G $140 \mathrm{~L} / 1280$, we get $S N=60$ in 40 sec (COS.sa.389908).
For PSA/G160M/1600, we get $S / N=60$ ($($ egs A) in 11 sec (COS.sa.389907).

WD1657+343-OFFSET-	Offset from WD1657+343 by	Radial Velocity: $78 \mathrm{~km} / \mathrm{sec}$	V=16.4+/-0.1	Nffset Position (WD1657+343-OFFSET-
NW-1.4AS	RA Offset: $2.77778 \mathrm{E}-4$ Degrees		Reference Frame: ICRS	

Comments: The new roll angle is set to $135+/-2.5$. This target is offset 1 " in $-X,+Y$ or delta $[A D, X D]=(1,-1)^{\prime \prime}$
WD1657+343 offset for ACQ Sequence for a roll angle of $135+/-2.5$
$(A D, X D)=\left(0,-1.0^{\prime \prime}\right)=1 " @ 45^{\circ} E$ of N
$R A=+\operatorname{sqrt}(2)^{\prime \prime *} \cos \left(45^{\circ}\right)=+1^{\prime \prime}=0.00027777778^{\circ}$
$D E C=-\operatorname{sqrt}(2) " * \sin \left(45^{\circ}\right)=-1 "$
77778°

(22)	$\begin{aligned} & \text { WD1657+343-OFFSET- } \\ & \text { XD-1.0 } \end{aligned}$	Offset from WD1657+343 by RA Offset: 0.0 Degrees	Radial Velocity: $78 \mathrm{~km} / \mathrm{sec}$	$\mathrm{V}=16.4+/-0.1$	Offset Position (WD1657+343-OFFSET-XD-1.0)

Comments: The new roll angle is set to $135+/-2.5$. This offset is 1 " in $-Y(X D)$.
WD1657+343 offset for ACQ/PEAKXD
$(A D, X D)=\left(0,1.0^{\prime \prime}\right)=1$ " to the S
$A D, X D=0,0,0^{\prime \prime}$
$R A=0, D E+1$.

\#	$\begin{aligned} & \text { Label } \\ & \text { (ETC Run) } \\ & \hline \end{aligned}$	Target	Config,Mode,Aperture	Spectral E
1	$\begin{aligned} & 2 \text { nuv a/im } \\ & \text { (COS.ta. } 389 \\ & 915 \text {) } \end{aligned}$	(2) WD1657+343	COS/NUV, ACQ/IMAGE, BOA	IIRRORA
Comments: NUV ACQ/IMAGE with BOA+MIRRORA to define centering. COS.ta. 389915 Requested Signal/Noise Ratio $=60.000$ gives: Time $=98.1324$ seconds				
2	$\begin{aligned} & \text { G130M - PE } \\ & \text { AKXD - No } \\ & \text { minal } \\ & \text { (COS.sa. } 389 \\ & \text { 905) } \end{aligned}$	(2) WD1657+343	COS/FUV, ACQ/PEAKXD, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$

Exp. Time/[Actual Dur.]

98 Secs	Orbit
$[==>]$	$[1]$

or abents: ACQ/P

Comments: COS.sa. 389910 gives $S / N=60$ in only in 2.6 s, we go for 12 because that is the lamp flash time.
4 G130M - PE (22) WD1657+343- COS/FUV, ACQ/PEAKXD, PSA G130M
AKXD-XD- OFFSET-XD-1.0
1309 A
1.0

COS.sa. 389
905)

$\begin{array}{l}\text { Sequence 3-5 Non-In } \\ \text { t in Repeat of Verific } \\ \text { ation Visit @ Second } \\ \text { Lifetime Position (66 }\end{array}$	3 Se

3 Secs	
$[==>]$	$[1]$

Comments: ACQ/PEAKXD, see previous comment

5	G130M - C	(22) WD1657+343-	COS/FUV, TIME-TAG, PSA	G130M
ONFIRMA	OFFSET-XD-1.0		1309 A	BUFFER-TIME=20
TION SPEC			$0 ;$	
TRUM			FP-POS=3;	
(COS.sa. 389			FLASH=YES	
905)				

Sequence 3-5 Non-In t in Repeat of Verific ation Visit @ Second Lifetime Position (66	20 Secs	
)		

Comments: Confirmation spectrum. COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 S / N=60$ in 3 s , we go for 20s to get a good look.
The actual count rate from Visit 1 was 0.07-0.14 counts/s/column, or a total count rate of $\sim 1-2000$ counts $/$ segment/second. In 20 s, we obtained $8-17$ counts $/ R E$

Comments: COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in 3 s , we go for 12 because this is the lamp flash time

7	G130M - PE (2) WD1657+343	COS/FUV, ACQ/PEAKXD, PSA	G130M
	AKXD-XD		1309 A
	+1.0		
	(COS.sa. 389		
	$905)$		

Sequence 6-8 Non-In t in Repeat of Verific ation Visit @ Second	3 Secs	
Lifetime Position (66		

Comments: ACQ/PEAKXD

8	G130M - C (2) WD1657+343	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=20
ONFIRMA		1309 A	$0 ;$	
TION SPEC			FP-POS=3;	
TRUM			FLASH=YES	
(COS.sa. 389				

Sequence 6-8 Non-In t in Repeat of Verific	20 Secs	
ation Visit @ Second	$[==>]$	
Lifetime Position (66		
$)$		

Comments: Confirmation spectrum. COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in 3 s , we go for 20 s to get a good look.

Proposal 12797 - Repeat of Verification Visit @ Second Lifetime Position (66) - Second COS FUV Lifetime Position: FUV Target Acqui..

Proposal 12797-Repeat of Verification Visit @ Second Lifetime Position (66) - Second COS FUV Lifetime Position: FUV Target Acqui..

18	G160M - O (2) WD1657+343	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 18-20 Non	22 Secs	
	FFSET SPE CTRUM (COS.sa. 389 907)		1600 A	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	[==>]	[2]
Comments: Check spectrum location.							
19	G160M - PE (2) WD1657+343	COS/FUV, ACQ/PEAKXD, PSA			Sequence 18-20 Non	11 Secs	
	$\begin{aligned} & \text { AKXD-XD } \\ & +1.0 \\ & \text { (COS.sa. } 389 \\ & \text { 907) } \end{aligned}$		1600 A		-Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	[==>]	[2]
Comments: ACQ/PEAKXD							
20	G160M - C (2) WD1657+343	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 18-20 Non	22 Secs	
	ONFIRMA TION SPEC TRUM (COS.sa. 389 907)		1600 A	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	[==>]	[2]
Comments: confirmation spectrum							
	G160M - O (21) WD1657+343-	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 21-27 Non	22 Secs	
	FFSET SPE OFFSET-NW-1.4AS CTRUM (COS.sa. 389 907)		$1600 \mathrm{~A}$	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	[==>]	[2]
Comments: COS.sa.389907. Gives S/N=60 for Segment A only in 10.8. wo go for $4 x$ that. BT=2/3*1,412 or $\sim 1,000$. We use 700 to be safe.							
22	G160M - A (21) WD1657+343-	COS/FUV, ACQ/SEARCH, PSA	G160M	CENTER=FLUX-W	Sequence 21-27 Non	8 Secs	
	```CQ/SEARC OFFSET-NW-1.4AS H on OFFS ET (COS.sa. 389 907)```		1600 A	T-FLR; SCAN-SIZE=3	-Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	[==>]	[2]
Comments: COS.sa.389907. Gives S/N=60 for Segment A only in 10.8.							
23	G160M - C (21) WD1657+343-	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 21-27 Non	44 Secs	
	ONFIRMA OFFSET-NW-1.4AS   TION SPEC   TRUM   (COS.sa. 389   907)		$1600 \mathrm{~A}$	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	[==>]	[2]
Comments: COS.sa.389907. Gives S/N=60 for Segment A only in 10.8. wo go for $4 x$ that. $B T=2 / 3 * 1,412$ or $\sim 1,000$. We use 700 to be safe.							
24	G160M - A (21) WD1657+343-	COS/FUV, ACQ/PEAKXD, PSA	G160M		Sequence 21-27 Non	11 Secs	
	CQ/PEAKX OFFSET-NW-1.4AS   D on OFFS   ET   (COS.sa. 389   907)		1600 A		-Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	[==>]	[2]
Comments: COS.sa.389907. Gives S/N=60 for Segment A only in 10.8.							
25	G160M - C (21) WD1657+343-	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	Sequence 21-27 Non	60 Secs	
	ONFIRMA OFFSET-NW-1.4AS   TION SPEC   TRUM   (COS.sa. 389   907)		$1600 \mathrm{~A}$	$\begin{aligned} & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	-Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	[==>]	[2]

Comments: COS.sa.389907. Gives $S / N=60$ for Segment $A$ only in 10.8. wo go for $4 x$ that. $B T=2 / 3^{*} 1,412$ or $\sim 1,000$. We use 700 to be safe.

Proposal 12797 - Repeat of Verification Visit @ Second Lifetime Position (66) - Second COS FUV Lifetime Position: FUV Target Acqui..

26	G160M - A (21) WD1657+343-	COS/FUV, ACQ/PEAKD, PSA	G160M	NUM-POS=7;		Sequence 21-27 Non	10 Secs	
	```CQ/PEAKD OFFSET-NW-1.4AS on OFFSET (COS.sa. 389 907)```		1600 A	STEP-SIZE=0.45		-Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	[==>]	[2]
Comments: ACQ/PEAKD. COS.sa. 389907								
27	G160M - C (21) WD1657+343-	COS/FUV, TIME-TAG, PSA	G160M 1600 A	$\begin{aligned} & \text { BUFFER-TIME=70 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$	POS TARG 0.333,nu 11	Sequence 21-27 Non -Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	60 Secs	
	ONFIRMA OFFSET-NW-1.4AS TION SPEC TRUM (COS.sa. 389 907)						[==>]	[2]
Comments: COS.sa.389907. Gives S/N=60 for Segment A only in 10.8. wo go for $4 x$ that. $B T=2 / 3 * 1,412$ or $\sim 1,000$. We use 700 to be safe.								
28	G130M - O (2) WD1657+343	COS/FUV, TIME-TAG, PSA	G130M 1309 A	```BUFFER-TIME=20 0; FP-POS=3; FLASH=YES```		Sequence 28-32 Non -Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	20 Secs	
	FFSET SPE CTRUM $\text { (COS.sa. } 389$ 905)						[==>]	[2]
Comments: Baseline spectrum, we last centered 1" off in both XD and AD, so this spectrum should be off center. COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in $3 \mathrm{~s} . \mathrm{BT}=2 / 3 * 476$								
29	G130M - PE (2) WD1657+343	COS/FUV, ACQ/PEAKXD, PSA	G130M 1309 A			Sequence 28-32 Non -Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	3 Secs	
	$\begin{aligned} & \text { AKXD } \\ & \text { (COS.sa. } 389 \\ & 905 \text {) } \end{aligned}$						[==>]	[2]
Comments: ACQ/PEAKXD. COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in 3 s. The target should be offset by 1 " in both $A D$ and $X D$, so this is a challenging TA								
30	G130M - C (2) WD1657+343	COS/FUV, TIME-TAG, PSA	G130M 1309 A	```BUFFER-TIME=20 0; FP-POS=3; FLASH=YES```		Sequence 28-32 Non -Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	60 Secs	
	ONFIRMA TION SPEC TRUM (COS.sa. 389 905)						[==>]	[2]
Comments: Confirmation spectrum, did we center in XD ? This is a longer exposure so that we can get a decent read on the AD position								
31	G130M - PE (2) WD1657+343	COS/FUV, ACQ/PEAKD, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { NUM-POS=5; } \\ & \text { STEP-SIZE=0.8 } \end{aligned}$		Sequence 28-32 Non -Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	3 Secs	
	$\begin{aligned} & \text { AKD } \\ & \text { (COS.sa. } 389 \\ & \text { 905) } \end{aligned}$						[==>]	[2]
Comments: ACQ/PEAKD. COS.sa. 389905 Gives $S / N=40$ for Segment A only in 1.2s, S/N=60 in 3 s . The target should be offset by 1 " in both $A D$ and $X D$, so this is a challenging TA.								
32	G130M - C (2) WD1657+343	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=20 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES } \end{aligned}$		Sequence 28-32 Non -Int in Repeat of Veri fication Visit @ Sec ond Lifetime Positio n (66)	60 Secs	
	ONFIRMA TION SPEC TRUM (COS.sa. 389 905)						[==>]	[2]

Proposal 12797 - Repeat of Verification Visit @ Second Lifetime Position (66) - Second COS FUV Lifetime Position: FUV Target Acqui.

Proposal 12797 - ACQ/SEARCH TEST (11) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797, ACQ/SEARCH TEST (11), implementation

Diagnostic Status: Warning

Scientific Instruments: COS/NUV, S/C, COS/FUV
Special Requirements: SCHED 100\%; ORIENT 192.5D TO 197.5 D; ON HOLD
Comments: ACQ/SEARCH Test. The target is AVZ18 (the SMOV TA target).
For a $3 x 3 x 1$ " spiral pattern, the telescope slew is [AD,XD]
ท! $!$!

0.00	0.00
1.00	0.00
1.00	1.00
0.00	1.00
-1.00	1.00
-1.00	0.00
-1.00	-1.00
0.00	-1.00
1.00	-1.00

The roll angle is constrained to $195+/-2.5$ degrees, schedulability $=100 \%$
 $A D$ and perform a $3 \times 3 \times 1.767^{\prime \prime}$ ACQ/SEARCH on the target.
On Hold Comments: ACQ/SEARCH TEST w/o HV reset to simulate actual timing
ACQ/SEARCH TEST (11)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting
(ACQ/SEARCH TEST (11)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/IMAGE.
(ACQ/SEARCH TEST (11)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/SEARCH TEST (11)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/SEARCH TEST (11)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/SEARCH TEST (11) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE

Proposal 12797 - ACQ/SEARCH TEST (11) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Comments: POSTARG TO SIMULATE ACQ/SEARCH. $S / N=60$ is reached in 2 seconds. We want to get a decent look at the spectrum, so we'll observe for 20 seconds. $(\sim 16000$ total counts($A+B)$)

Proposal 12797-ACQ/SEARCH TEST (11) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

5	G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60	POS TARG 1.0,1.0	20 Secs	
	OSTARG + SPECTRU		1309 A	$0 ;$		[$==>$]	
	M2 (1,1)(Co			FP-POS=3;			
	rner)			FLASH=YES;			[1]
	$\begin{aligned} & \text { (COS.sa. } 360 \\ & \text { 701) } \end{aligned}$			LIFETIME-POS=A LTERNATE			
Comments: POSTARG TO SIMULATE ACQ/SEARCH							
6	(1) AZV18	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	BUFFER-TIME=60 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG 0,1.0	20 Secs	[1]
						[==>]	
Comments: POSTARG TO SIMULATE ACQ/SEARCH							
7	G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M 1309 A	BUFFER-TIME=60 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG -1,1	$20 \text { Secs }$	[1]
	OSTARG + SPECTRU					[==>]	
	orner)						
	(COS.sa. 360 701)						
Comments: POSTARG TO SIMULATE ACQ/SEARCH							
8	(1) AZV18	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=60 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES; } \\ & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$	POS TARG -1,null	20 Secs	
						[==>]	
							[1]
Comments: POSTARG TO SIMULATE ACQ/SEARCH							
9	(1) AZV18	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=60 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES; } \\ & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$	POS TARG -1,-1	20 Secs	
						[==>]	
							[1]
Comments: POSTARG TO SIMULATE ACQ/SEARCH							
10	(1) AZV18	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=60 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES; } \\ & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$	POS TARG 0,-1	20 Secs	
						[==>]	
							[1]
	701)						
Comments: POSTARG TO SIMULATE ACQ/SEARCH							
	G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG 1,-1	20 Secs	
	OSTARG + SPECTRU		$1309 \mathrm{~A}$			[$==>$]	
	$\text { M8 }(1,-1) \text { (C }$						
	orner) (COS.sa 360						[1]
	$\begin{aligned} & (\mathrm{COS} \\ & 701) \end{aligned}$						

Proposal 12797 - ACQ/SEARCH TEST (11) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/SEARCH TEST (11) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

\#	$\begin{aligned} & \text { Label } \\ & \text { (ETC Run) } \\ & \hline \end{aligned}$	Target	Config,Mode,Aperture	Spectral Els.	Opt. Param
1	$\begin{aligned} & 2 \text { nuv a/im } \\ & \text { (COS.ta. } 360 \\ & 711 \text {) } \end{aligned}$	(1) AZV18	COS/NUV, ACQ/IMAGE, BOA	MIRRORA	
Comments: NUV ACQ/IMAGE with BOA+MIRRORA to refine centering. (COS92525 gives S/N=60 in 28s)					
The FUV qasistates s.r. is specifically for maintaining the FUV in the HVSEGA state.					
SQL is required for the dump created by this exposure. The FUV state should be changed to HVSEGA.					

GS ACQ SCENARI	28 Secs	
O BASE1BN3;	$[==>]$	
QASISTATES COS		
FUV HVSEGA HVS		
EGA		

SQL is required for the dump created by this exposure. The FUV state should be changed to HVSEGA
2 S/C to updat DARK S/C, DATA, NONE

> e the G140L $/ 1105$ focus
($-370+0$)

PEC COM INSTR ELOSMPATCH;
S/C, DATA, NONE
QASISTATES COS FUV HVSEGA HVS EGA;
QESIPARM ACTIO
N REPLACE;
QESIPARM GRATI
NG G140L;
QESIPARM CENT
WAVE 1105;
QESIPARM FOCUS
-370

8 Secs	
$[==>]$	
	$[1]$

 ed focus value.The SCR 344 FSW has the following focus G140L positions;
const pcmech_OSM_position_table_ struct pcmech_OSMTBl[MECH_OSM_TABLE_SIZE] =
$\{1,1105,1598,-370,35092,39716\}$, /* G140L, OSM1 *
\{1,1230, 1591, -30, 35055, 39680\}, /* G140L, OSM1 */
\{1, 1280, 1590, 19, 35050, 39675\}, /* G140L, OSM1 */

3 S/C to updat DARK
e the G140L
e the G140L
/1280 focus
(19+0)

S/C, DATA, NONE

- DATA,

SPEC COM INST ELOSMPATCH;
QESIPARM ACTIO N REPLACE;
QESIPARM GRATI
NG G140L;
QESIPARM CENT
WAVE 1280;
QESIPARM FOCUS
QES
19

8 Secs	
$[==>]$	
	$[1]$

 focus value.
The SCR 344 FSW has the following focus G140L positions;
const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] $=$

```
{1, 1105, 1598, -370, 35092, 39716}, /* G140L, OSM1 */
(1, 1230, 1591, -30, 35055, 39680}, /* G140L, OSM1 */
{1,1280, 1590, 19, 35050, 39675}, /* G140L, OSM1 */
```

Proposal 12797-ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

	4 G140L/1105 (1) AZV18	COS/FUV, TIME-TAG, PSA	G140L	BUFFER-TIME $=40$ 0 ;	30 Secs	[1]
	- BASELIN		1105 A	0	[==>]	
	ESPECTR			FP-POS=3;		
	$\begin{aligned} & \text { (COS.sp. } 389 \\ & 720 \text {) } \end{aligned}$			$\begin{aligned} & \text { FLASH=S0200D03 } \\ & 0 ; \end{aligned}$		
				WAVECAL=YES;		
				LIFETIME-POS=A LTERNATE		
	Comments: Spectrum of source to define the G140L/1105 XD location of target when it is centered w/ NUV ACQ/IMAGE. COS.sp. 389720 gives $S / N / R E=10$ at $1400.00 \AA$ in 38.5800 seconds. We don't bother to scale this, because the exposure time is so small (equal to our lamp flash). BT=2/3 $(838 * 0.75)=420$ (we use 400)					
	5 FUV HV R DARK	S/C, DATA, NONE			418 Secs	
	$\begin{aligned} & \text { AMPUP (16 } \\ & 7 / 163 \text {) } \end{aligned}$				[==>]	[1]
	Comments: SQL required for qexposure to specify the si_used $=$ " COS" $^{\prime}$.					The special commanding here sets the the nominal high voltage for this visit (HVNOM) for segments A and B (ENDCTSA and ENDCTS B) to 167 and 163, respectively. 403s is the correct rampup time for 162/159. n allow 3 additional seconds for every positive unit of offset is required. Therefore, the rampup time is 403+(167-162)*3=418
	6 G140L/1280 (1) AZV18	COS/FUV, TIME-TAG, PSA	G140L	$\begin{aligned} & \text { BUFFER-TIME=40 } \\ & 0 ; \end{aligned}$	36 Secs	
	- BASELIN		$1280 \mathrm{~A}$		[==>]	[1]
	UM			FP-POS=3;		
	$\begin{aligned} & \text { (COS.sp. } 389 \\ & 720 \text {) } \end{aligned}$			$\begin{aligned} & \text { FLASH=S0200D03 } \\ & 6 ; \end{aligned}$		
				WAVECAL=YES;		
				LIFETIME-POS=A LTERNATE		
	Comments: Spectrum of source to define the G140L/1280 XD location of target when it is centered w/ NUV ACQ/IMAGE. COS.sp. 389720 gives $S / N / R E=10$ at $1400.00 \AA$ in 38.5800 seconds. We don't bother to scale this, because the exposure time is so small (equal to our lamp flash). BT=2/3 $(838 * 0.75)=420$ (we use 400)					

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

		S/C to RES DARK	S/C, DATA, NONE	SPEC COM INSTR	8 Secs					
		ET the G160		ELOSMPATCH;	[==>]	[1]				
		M/1577 focu s		QESIPARM ACTIO N REPLACE;						
		QESIPARM GRATI NG G160M;								
		QESIPARM CENT WAVE 1577;								
		$\underset{-384}{\text { QESIPARM FOCUS }}$								
Comments: Special Commanding to RESET the G160M/1577 settings with its nominal value (-384).										
The SCR 344 FSW has the following focus G160M positions; const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] = \{2, 1577, 11203,-384, 18693, 23323\}, /* G160M, OSM1 */ \{2, 1589, 11199, -214, 18671, 23301\}, /* G160M, OSM1 */ \{2, 1600, 11195, -44, 18651, 23281\}, /* G160M, OSM1 */ \{2, 1611, 11191, 126, 18631, 23261\}, /* G160M, OSM1 */ \{2, 1623, 11187, 296, 18609, 23239\}, /* G160M, OSM1 */										
		S/C to RES DARK	S/C, DATA, NONE	SPEC COM INSTR	8 Secs					
		ET the G160		ELOSMPATCH;	[==>]	[1]				
		$\begin{aligned} & \mathrm{M} / 1600 \text { focu } \\ & \mathrm{s} \end{aligned}$		QESIPARM ACTIO N REPLACE;						
				QESIPARM GRATI NG G160M;						
				QESIPARM CENT WAVE 1600 ;						
				$\underset{-44}{\text { QESIPARM FOCUS }}$						
Comments: Special Commanding to RESET the G160M/1600 settings with its nominal value(-44). The SCR 344 FSW has the following focus G160M positions; const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] = \{2, 1577, 11203, -384, 18693, 23323\}, /* G160M, OSM1 */ \{2, 1589, 11199, -214, 18671, 23301\}, /* G160M, OSM1 */ \{2, 1600, 11195, -44, 18651, 23281\}, /* G160M, OSM1 */ \{2, 1611, 11191, 126, 18631, 23261\}, /* G160M, OSM1 */ \{2, 1623, 11187, 296, 18609, 23239\}, /* G160M, OSM1 */										
		S/C to RES DARK	S/C, DATA, NONE	SPEC COM INSTR	8 Secs					
		ET the G160		ELOSMPATCH;	[==>]	[1]				
				QESIPARM ACTIO N REPLACE;						
				QESIPARM GRATI NG G160M;						
				QESIPARM CENT WAVE 1623;						
				QESIPARM FOCUS 296						
Comments: Special Commanding to RESET the G160M/1623 settings with its nominal value (296). The SCR 344 FSW has the following focus G160M positions; const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH OSM_TABLE_SIZE] = $\{2,1577,11203,-384,18693,23323\}, / *$ G160M, OSM1 */ \{2, 1589, 11199, -214, 18671, 23301\}, /* G160M, OSM1 */ \{2, 1600, 11195, -44, 18651, 23281\}, /* G160M, OSM1 */ $\{2,1611,11191,126,18631,23261\}$, $\{2,1623,11187,296,18609,23239\}$, /* G160M, OSM1										

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

Proposal 12797 - ACQ/PEAKD TEST (12) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}
0

Proposal 12797 - ACQ/PEAKXD TEST G130M (13) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{

Proposal 12797, ACQ/PEAKXD TEST G130M (13), implementation

Diagnostic Status: Warning

$\stackrel{\square}{\square}$
cientific Instruments: COS/NUV, S/C, COS/FUV
 This will allow us to measure the plate scale. The +/-1.6" offsets are double the exposure time to compensate for vignetting. We then proceed to test PEAKXD at offsets of $+/-0.5,+/-1.0$ and $+/-1.5^{\prime \prime}$.

The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
On Hold Comments: ACQ/PEAKXD TEST w/o HV reset to simulate actual timing
(ACQ/PEAKXD TEST G130M (13)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/PEAKXD
(ACQ/PEAKXD TEST G130M (13)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/PEAKXD TEST G130M (13)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/PEAKXD TEST G130M (13)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.
(ACQ/PEAKXD TEST G130M (13)) Warning (Orbit Planner): VISIBILITY OVERRUN
(ACQ/PEAKXD TEST G130M (13)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/IMAGE
(ACQ/PEAKXD TEST G130M (13)) Warning (Form): COS ACQ/PEAKXD exposure should be followed by an ACQ/PEAKD exposure in the Visit

Proposal 12797 - ACQ/PEAKXD TEST G130M (13) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{$. \# Target Coordinates
RA: $004712.1700(11.8007083 \mathrm{~d})$
Dec: -730632.68 (-73.10908d)

Proper Motion RA: -0.0003 sec of time $/ \mathrm{yr}$	$\mathrm{V}=12.48$
Proper Motion Dec: $-0.0035 \mathrm{arcsec} / \mathrm{yr}$	(B-V) $=+0.04$

Comments: B2Ia, Magellanic Clouds. Nominal ETC exposure times from spectrum supplied by D. Lennon:
NUV, MIRRORA, BOA: 27s (COS.ta.360711)
FUV, G130M, 1309, PSA: 2s (COS.sa.360701) \& 182s S/N=10 spectroscopy (COS.sp.360698)
FUV, G140L, 1105: 038s $S / N=10$ spectroscopy (COS.sp.389720)
FUV, G160M, 1600:0215s S/N=10 spectroscopy (COS.sp.389715)

(5)	AZV18-OFFSET-$\mathrm{XD}+0.5$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+0.5)
		RA Offset: -1.25876E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS
		Dec Offset: 0.211309 Arcsec		

Comments: This target is offset 1.0" in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
AZV18 offset for ACQ/PEAKXD
$(A D, X D)=\left(0,-0.5^{\prime \prime}\right)=-0.5^{\prime \prime} @ 25^{\circ} S$ of E
$R A=-0.5^{\prime \prime *} * \cos \left(25^{\circ}\right)=-0.453154^{\prime \prime}=-0.000125876^{\circ}$
$D E C=0.5^{\prime *} * \sin \left(25^{\circ}\right)=0.211309^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A\left({ }^{\prime \prime}\right) D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
Fixed Targets
-0.9060.423-2.51752E-04
-1.3590.634-3.77628E-04
(10) AZV18-OFFSET

XD+1.0
Offset from AZV18 by
RA Offset: $-2.51752 \mathrm{E}-4$ Degrees
Dec Offset: 0.422618 Arcsec
$\mathrm{V}=12.48 \quad$ Offset Position (AZV18-OFFSET-XD+1.0)

Dec Offset: 0.422618 Arcsec
Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is $250+/-2.5 d$ (visits 3-5)
AZV18 1.0" offset for ACQ/PEAKD $\left(0,-1.0^{\prime \prime}\right)=-1 " @ 25^{\circ} S$ of E
$R A=-1.0^{\prime \prime *} * \cos \left(20^{\circ}\right)=-0.906308^{\prime \prime}=-0.000251752^{\circ}$
$D E C=1.0^{\prime \prime *} \sin \left(20^{\circ}\right)=0.422618^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A(") D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
-0.9060.423-2.51752E-04

(15)	$\begin{aligned} & \text { AZV18-OFFSET- } \\ & \text { XD+1.5 } \end{aligned}$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+1.5)
		RA Offset: -3.77628E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS

Comments: This target is offset 1.0" in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
AZV18 1.5" offset for ACQ/PEAKD
(0,-1.5") $=-1.5^{\prime \prime} @ 25^{\circ} S$ of E
$R A=-1.5^{\prime \prime *} \cos \left(20^{\circ}\right)=-1.35946=-0.000377628^{\circ}$
RA=-1.5
$D E C=1.5^{\prime *} \sin \left(20^{\circ}\right)=0.633927^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the -0.5, -1.0, \& -1.5 offsets
$R A(") D E C(") R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
$13590.634-377628 E-04$

6	G130M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=30	POS TARG null,-0.6	Sequence 3-11 Non-I	100 Secs	
	OSTARG +		1309 A			nt in ACQ/PEAKXD TEST G130M (13)	[==>]	
	M3			FP-POS=3;				
	(COS.sa. 360			FLASH=YES;				[1]
	701)			LIFETIME-POS=A LTERNATE				

 econds
 conds.

 conds.
 econds, since it is heavily vignetted.

Proposal 12797-ACQ/PEAKXD TEST G130M (13) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{..

12 G130M - PE (1) AZV18
COS/FUV, ACQ/PEAKXD, PSA
G130M
Sequence 12-13 Non
-Int in ACQ/PEAKX
D TEST G130M (13
10 Secs
)

Comments: ACQ/PEAKXD on the centered target. COS.sa. $360701, S / N=60$ is reached in 2 seconds $(A+B)$, we use 10s sure we get enough counts.

13	G130M - B (1) AZV18	COS/FUV, TIME-TAG, PSA
	ASELINE S	G130M
PECTRUM		1309 A
(COS.sp.360		
	698)	

Sequence 12-13 Non
-Int in ACQ/PEAKX
D TEST G130M (13 \qquad
[==>]
FP-POS=3;
)
FLASH=YES;
LIFETIME-POS=A
LTERNATE
Comments: Spectrum of source to test previous ACQ/PEAKXD centering. COS.sp. 360698 gives S/N/RE $=10$ in 182 seconds, BT=2/3*986 or ~ 630.
14 G130M -PE (10) AZV18-OFFSE COS/FUV, ACQ/PEAKXD, PSA AKXD- XD T-XD+1.0
+1.0
G130M LIFETIME-POS=A
1309 A LTERNATE

Sequence 14-15 Non	10 Secs
-Int in ACQ/PEAKX	$[==>]$
D TEST G130M (13	

]

COS.sa. 360
701)
ugh counts
15 G130M B (10) AZV18-OFFSE COS/FUV TIME-TAG, PSA $\mathrm{S} / \mathrm{N}=60$ is reached in 2 seconds (At B ASELINE S T-XD+1.0 PECTRUM PECTRUM 698)

Comments: Spectrum of source to test previous ACQ/PEAKXD centering. COS.sp. 360698 gives $S / N / R E=10$ in 182 seconds, $B T=2 / 3 * 986$ or ~ 630.
16 G130M - PE (1) AZV18 COS/FUV, ACQ/PEAKXD, PSA G130M LIFETIME-POS A

COS/FUV, ACQ/PEAKXD, PSA
G130M LIFETIME-POS=A LTERNATE
1309 A
(COS.sa. 360 701)

Comments: ACQ/PEAKKD, back on original target, now -1.0" offset
17 G130M - B (1) AZV18 COS/FUV, TIME TAG, PSA
ASELINE S
PECTRUM
(COS.sp. 360

COS/FUV, TIME-TAG, PSA
ASELINE S
(COS.sp. 360
698)

G130M BUFFER-TIME=60
\square

FP-POS=3;
FLASH=YES
LIFETIME-POS=A LTERNATE

Sequence 16-17 Non	10 Secs	
-Int in ACQ/PEAKX		
D TEST G130M (13		
)	I==>]	

Sequence 16-17 Non	150 Secs	
-Int in ACQ/PEAKX		
D TEST G130M (13	$I==>]$	
)		

Comments: ACQ/PEAKD confirmation spectrum.
18 G130M - PE (5) AZV18-OFFSET COS/FUV, ACQ/PEAKXD, PSA

Comments: ACQ/PEAKXD on the target offset by $+0.5^{\prime \prime}$. COS.sa. $360701, S / N=60$ is reached in 2 seconds $(A+B)$, we use 10s sure we get enough counts.
19 G130M - B (5) AZV18-OFFSET COS/FUV, TIME-TAG, PSA

G130M

BUFFER-TIME=60
-Int in ACQ/PEAKX
D TEST G130M (13
FP-POS=3;
)

(COS.sp. 360

698)

FLASH=YES;
150 Secs
$[==>]$

LIFETIME
LTERNATE
Comments: Spectrum of source to test previous ACQ/PEAKXD centering. COS.sp. 360698 gives $S / N / R E=10$ in 182 seconds, $B T=2 / 3 * 986$ or ~ 630.

Proposal 12797-ACQ/PEAKXD TEST G130M (13) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{..

20	G130M - PE (1) AZV18	COS/FUV, ACQ/PEAKXD, PSA	G130M	LIFETIME-POS=A	Sequence 20-21 Non	10 Secs	
	$\begin{aligned} & \text { AKXD-XD- } \\ & 0.5 \\ & \text { (COS.sa. } 360 \\ & 701 \text {) } \end{aligned}$		$1309 \mathrm{~A}$	LTERNATE	-Int in ACQ/PEAKX D TEST G130M (13)	[==>]	[2]
Comments: Back on original target, $-0.5^{\prime \prime}$. COS.sa. $360701, \mathrm{~S} / \mathrm{N}=60$ is reached in 2 seconds $(A+B)$, we use 10 s sure we get enough counts.							
21	1 G130M - B (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M		Sequence 20-21 Non -Int in ACQ/PEAKX D TEST G130M (13)	150 Secs	
	ASELINE S PECTRUM (COS.sp. 360 698)		$1309 \mathrm{~A}$	0; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE		[==>]	[2]
Comments: Spectrum of source to test previous ACQ/PEAKXD centering. COS.sp. 360698 gives S/N/RE $=10$ in 182 seconds, $B T=2 / 3 * 986$ or ~ 630.							
22	$\begin{aligned} & \text { G130M - PE } \\ & \text { AKXD-XD } \\ & \text { AK) AZV18-OFFSE } \\ & \text { +1.5 } \\ & \text { (COS.sa. } 360 \\ & \text { 701) } \end{aligned}$	COS/FUV, ACQ/PEAKXD, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	LIFETIME-POS=A LTERNATE	Sequence 22-23 Non -Int in ACQ/PEAKX D TEST G130M (13)	15 Secs	
						[==>]	[2]
Comments: ACQ/PEAKXD on the target offset by $+1.5^{\prime \prime}$. COS.sa.360701, $S / N=60$ is reached in 2 seconds ($A+B$), we use 10s sure we get enough counts.							
23	$\begin{array}{ll} \text { G130M - B } & \text { (15) AZV18-OFFSE } \\ \text { ASELINE S } & \text { T-XD+1.5 } \\ \text { PECTRUM } \\ \text { (COS.sp. } 360 \\ \text { 698) } \end{array}$	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	Sequence 22-23 Non -Int in ACQ/PEAKX D TEST G130M (13)	150 Secs	
			$1309 \mathrm{~A}$			[==>]	[2]
Comments: Spectrum of source to test previous ACQ/PEAKXD centering. COS.sp. 360698 gives S/N/RE $=10$ in 182 seconds, BT=2/3*986 or ~ 630.							
24	4 G130M - PE (1) AZV18	COS/FUV, ACQ/PEAKXD, PSA	G130M	LIFETIME-POS=A LTERNATE	Sequence 24-25 Non -Int in ACQ/PEAKX D TEST G130M (13)	15 Secs	
	$\begin{aligned} & \text { AKXD-XD- } \\ & 1.5 \\ & \text { (COS.sa. } 360 \\ & 701 \text {) } \end{aligned}$		$1309 \mathrm{~A}$			[==>]	[2]
Comments: ACQ/PEAKXD on the target offset by -1.5'. COS.sa.360701, $\mathrm{S} / \mathrm{N}=60$ is reached in 2 seconds $(A+B)$, we use 10s sure we get enough counts.							
25	5 G130M - B (1) AZV18	COS/FUV, TIME-TAG, PSA	G130M	BUFFER-TIME=60 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	Sequence 24-25 Non -Int in ACQ/PEAKX D TEST G130M (13)	150 Secs	
	ASELINE S PECTRUM (COS.sp. 360 698)		$1309 \mathrm{~A}$			[==>]	[2]
Comments: Spectrum of source to test previous ACQ/PEAKXD centering. COS.sp. 360698 gives S/N/RE $=10$ in 182 seconds, $B T=2 / 3 * 986$ or ~ 630.							
26	6 S/C to RES DARK	S/C, DATA, NONE			SPEC COM INSTR ELOSMPATCH;	8 Secs	
	ET the G130 M/1309 focu s					[==>]	[2]
Comments: Special Commanding to reset the G130M/1309 settings with the original focus, the SCR 344 FSW position (170).							

Proposal 12797-ACQ/PEAKXD TEST G130M (13) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{..

Proposal 12797 - ACQ/PEAKXD TEST G130M (13) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{.$.

Proposal 12797 - ACQ/PEAKXD TEST G160M (14) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{

Proposal 12797, ACQ/PEAKXD TEST G160M (14), implementation

Diagnostic Status: Warning

Scientific Instruments: COS/NUV, S/C, COS/FUV
$\stackrel{-\infty}{\square}$
Special Requirements: SCHED 100\%; SAME ORIENT AS 13; BETWEEN 13-JUN-2012 AND 27-JUN-2012; ON HOLD
(target, take spectra at the following positions (-1.6,-1.1,-0.6, 0.5, $+/-1.0$ and $+/-1.5^{\prime \prime}$

The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
On Hold Comments: ACQ/PEAKXD TEST w/o HV reset to simulate actual timing
(ACQ/PEAKXD TEST G160M (14)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.

Proposal 12797 - ACQ/PEAKXD TEST G160M (14) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{$. \# Target Coordinates

Comments: B2Ia, Magellanic Clouds. Nominal ETC exposure times from spectrum supplied by D. Lennon:
NUV, MIRRORA, BOA: 27 s (COS.ta.360711)
FUV, G130M, 1309, PSA: 2s (COS.sa.360701) \& 182s S/N=10 spectroscopy (COS.sp.360698)
FUV, G140L, 1105: 038s S/N=10 spectroscopy (COS.sp. 389720)
FUV, G160M, 1600:0215s S/N=10 spectroscopy (COS.sp.389715)

(5)	AZV18-OFFSET-$\mathrm{XD}+0.5$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+0.5)
		RA Offset: -1.25876E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS
		Dec Offset: 0.211309 Arcsec		

Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is $250+/-2.5 d$ (visits 3-5)
AZV18 offset for ACQ/PEAKXD
$(A D, X D)=\left(0,-0.5^{\prime \prime}\right)=-0.5^{\prime \prime} @ 25^{\circ} S$ of E
$R A=-0.5^{\prime \prime} *$
$R A=-0.5^{\prime \prime *} \cos \left(25^{\circ}\right)=-0.453154^{\prime \prime}=-0.000125876^{\circ}$
$D E C=0.5^{\prime \prime *} \sin \left(25^{\circ}\right)=0.211309^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the -0.5, -1.0, \& -1.5 offsets
$R A(") D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
Fixed Targets
-0.9060.423-2.51752E-04
-1.3590.634-3.77628E-04
(10) AZV18-OFFSE

XD+1.0
Offset from AZV18 by
RA Offset: $-2.51752 \mathrm{E}-4$ Degrees
Dec Offset: 0.422618 Arcsec
$\mathrm{V}=12.48 \quad$ Offset Position (AZV18-OFFSET-XD+1.0)

Dec Offset: 0.422618 Arcsec
Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is $250+/-2.5 d$ (visits 3-5)
AZV18 1.0" offset for ACQ/PEAKD $\left(0,-1.0^{\prime \prime}\right)=-1 " @ 25^{\circ} S$ of E
$R A=-1.0^{\prime \prime *} * \cos \left(20^{\circ}\right)=-0.906308^{\prime \prime}=-0.000251752^{\circ}$
$D E C=1.0^{\prime \prime} * \sin \left(20^{\circ}\right)=0.422618^{\prime \prime}$
$D E C=1.0^{\prime \prime *} \sin \left(20^{\circ}\right)=0.422618^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A(") D E C(")$
$R A\left({ }^{\prime \prime}\right) D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
-0.9060.423-2.51752E-04

(15)	$\begin{aligned} & \text { AZV18-OFFSET- } \\ & \text { XD+1.5 } \end{aligned}$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+1.5)
		RA Offset: -3.77628E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS

Comments: This target is offset $1.0^{\prime \prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
AZV18 1.5" offset for ACQ/PEAKD
(0,-1.5") $=-1.5^{\prime \prime} @ 25^{\circ} S$ of E
$R A=-1.5^{\prime \prime *} \cos \left(20^{\circ}\right)=-1.35946=-0.000377628^{\circ}$
RA=-1.5
$D E C=1.5^{\prime *} \sin \left(20^{\circ}\right)=0.633927^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A(") D E C(") R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
$13590.6343 .77628 E-04$

 s heavily vignetted. We FLASH just to make sure the target is not drifting in raw coordinates due to thermal variations.

5		G160M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=40 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG null,-1.1	Sequence 3-11 Non-I nt in ACQ/PEAKXD TEST G160M (14)	140 Secs	[1]	
		OSTARG + SPECTRU		1600 A				[==>]		
		M2								
		(COS.sp. 389								
		715)								
Comments: POSTARG TO Move to $Y=-1.1 . S / N=60$ in 4-6s. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for 140 seconds, since it i s 40% vignetted, for centered exposures, we'll use 150 seconds. We FLASH just to make sure the target is not drifting in raw coordinates due to thermal variations.										
		G160M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=40 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG null,-0.6	Sequence 3-11 Non-I nt in ACQ/PEAKXD TEST G160M (14)	95 Secs	[1]	
		OSTARG + SPECTRU		1600 A				[==>]		
		$\begin{aligned} & \text { M3 } \\ & \text { (COS.sp. } 389 \end{aligned}$								
		715)								
Comments: POSTARG TO Move to $Y=-0.6 . S / N=60$ in 4-6s. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for 95 seconds. We FLAS H just to make sure the target is not drifting in raw coordinates due to thermal variations.										
		G160M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=40 0 ; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE	POS TARG null,-0.3	Sequence 3-11 Non-I nt in ACQ/PEAKXD TEST G160M (14)	95 Secs	[1]	
		OSTARG + SPECTRU		1600 A				[==>]		
		M4								
		$\begin{aligned} & \text { (COS.sp. } 389 \\ & 715) \end{aligned}$								
Comments: POSTARG TO Move to $Y=-0.3 . S / N=60$ in $4-6$ s. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for ~ 100 seconds. We FLASH just to make sure the target is not drifting in raw coordinates due to thermal variations.										
8		G160M - P (1) AZV18	COS/FUV, TIME-TAG, PSA	G160M	```BUFFER-TIME=40 POS TARG null,0.3 0; FP-POS=3; FLASH=YES; LIFETIME-POS=A LTERNATE```		Sequence 3-11 Non-I nt in ACQ/PEAKXD TEST G160M (14)	95 Secs	[1]	
		OSTARG + SPECTRU		1600 A			[==>]			
		(COS.sp. 389								

 H just to make sure the target is not drifting in raw coordinates due to thermal variations.

 SH just to make sure the target is not drifting in raw coordinates due to thermal variations.

10	G160M - P	(1) AZV18	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=40	POS TARG null,1.1	Sequence 3-11 Non-I	140 Secs	
	OSTARG +			1600 A	0		nt in ACQ/PEAKXD	[==>]	
	$\begin{aligned} & \text { SPECTRU } \\ & \text { M } 7 \end{aligned}$				FP-POS=3;		TEST G160M (14)		
	(COS.sp. 389				FLASH=YES;				[1]
	715)				LIFETIME-POS=A LTERNATE				

Proposal 12797-ACQ/PEAKXD TEST G160M (14) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{..

Comments: COS.sp. 389715 gives $S / N / R E=60$ in 4-6 seconds. Now try from $0.5^{\prime \prime}$ away.
19 G160M - B (5) AZV18-OFFSET COS/FUV, TIME-TAG, PSA

> G160M
> 1600 A

ASELINE S -XD+0.5
(COS.sp. 389
715)

BUFFER-TIME=42
B 0;
0
FP-POS=3;
FLASH=YES;
LIFETIME-POS=A
LTERNATE

Sequence 18-19 Non 140 Secs
-Int in ACQ/PEAKX
D TEST G160M (14
)

$$
\begin{aligned}
& 140 \text { Secs } \\
& {[==>]}
\end{aligned}
$$

 to be safe), due to time constraints, the exposure time has been dropped to 140 s .
20 G160M - PE (1) AZV18 COS/FUV, ACQ/PEAKXD, PSA
AKXD-0.5
(COS.sp. 389
$\begin{array}{ll}\text { G160M } & \text { LIFETIME-POS=A } \\ 1600 \text { A } & \text { LTERNATE }\end{array}$
BUFFER-TIME=42
$0 ;$
FP-POS=3;
FLASH=YES;
LIFETIME-POS=A
LTERNATE

Sequence 20-21 Non	10 Secs	
-Int in ACQ/PEAKX		
D TEST G160M (14	$[==>]$	
$)$		

Comments: COS.sp. 389715 gives $S / N / R E=60$ in $4-6$ seconds. Now 0.5" from the other direction.
21 G160M - B (1) AZV18
ASELINE S
PECTRUM
715)

G160M
1600 A
1600 A

0
PLASH

LTERNATE

Sequence 20-21 Non	140 Secs	
-Int in ACQ/PEAKX	D TEST G160M (14	$[==>]$
)		
[2]		

Comments: COS.sp. 389715 (ETC20.1.1) gives $S / N / R E=10$ @ 1610A in 287 s. (BT
22 G160M - PE (15) AZV18-OFFSE COS/FUV, ACQ/PEAKXD, PSA AKXD-1.5 T-XD+1.5 (COS.sp. 389 715)

G160M
1600 A LTERNATE
 -Int in ACQ/PEAKX
D TEST G160M (14) TEST G160M (14)

Comments: COS.sp. 389715 gives S/N/RE=60 in 4-6 seconds. Ok, one last time from 1.5" away, so increase the exposure time due to the vignetting.

23 G160M - B (15) AZV18-OFFSE COS/FUV, TIME-TAG, PSA

G160M ASELINE S T-XD+1.5 PECTRUM
(COS.sp. 389
1600 A 715)

BUFFER-TIME=42
0;

Sequence 22-23 Non	140 Secs

-Int in ACQ/PEAKX D TEST G160M (14) ${ }^{\text {D T }}$
FP-POS=3;
FLASH=YES;
LIFETIME-POS=A
LTERNATE
 to be safe), due to time constraints, the exposure time has been dropped to 140 s .
24 G160M - PE (1) AZV18 COS/FUV, ACQ/PEAKXD, PSA

AKXD+1.5	
(COS.sp. 389	1600 A

LIFETIME-POS
LTERNATE

Sequence 24-25 Non	15 Secs	
-Int in ACQ/PEAKX	$[==>]$	
D TEST G160M (14		$[2]$

Comments: COS.sp. 389715 gives $S / N / R E=60$ in 4-6 seconds. Ok, one last time from 1.5" away, so increase the exposure time due to the vignetting.
25 G160M - B (1) AZV18 COS/FUV, TIME-TAG, PSA G160M BUFFER-T1
ASELINE S
PECTRUM
(COS.sp. 389

1600 A 0;
FP-POS=3;
Sequence 24-25 Non -Int in ACQ/PEAKX D TEST G160M (14
(COS.sp. 389
715)

FLASH=YES;
)

140 Secs	
$[==>]$	$[2]$

 to be safe), due to time constraints, the exposure time has been dropped to 140 s .

Proposal 12797 - ACQ/PEAKXD TEST G160M (14) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{

Proposal 12797 - ACQ/PEAKXD TEST G160M (14) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{.$.

Proposal 12797 - ACQ/PEAKXD TEST G160M (14) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{.$.

Proposal 12797 - ACQ/PEAKXD TEST G140L (15) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{.

Proposal 12797, ACQ/PEAKXD TEST G140L (15), implementation
 Wed Jul 25 01:38:55 GMT 2012

Diagnostic Status: Warning

Scientific Instruments: COS/NUV, S/C, COS/FUV
Special Requirements: SCHED 100\%; SAME ORIENT AS 13; BETWEEN 13-JUN-2012 AND 27-JUN-2012; ON HOLD
흥

 for vignetting. We then proceed to test PEAKXD at offsets of $+/-0.5,+/-1.0$ and $+/-1.5^{\prime \prime}$

The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
Note that this visit should only proceed after the April/May 2012 SIAF file update ($A D=A D-0.1^{\prime \prime}$) as the first exposures are designed to test any SIAF changes in the dispersion direction
On Hold Comments: ACQ/PEAKD TEST w/o HV reset to simulate actual timing. Note that this visit should only proceed after the April/May 2012 SIAF file update (AD=AD - 0.1 ")
(ACQ/PEAKXD TEST G140L (15)) Warning (Form): COS ACQ/PEAKXD exposure should be followed by an ACQ/PEAKD exposure in the Visit.
Diagnostics
(ACQ/PEAKXD TEST G140L (15)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/PEAKXD.
(ACQ/PEAKXD TEST G140L (15)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/PEAKXD TEST G140L (15)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/PEAKXD TEST G140L (15)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting
(ACQ/PEAKXD TEST G140L (15)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/IMAGE.
(ACQ/PEAKXD TEST G140L (15)) Warning (Orbit Planner): VISIBILITY OVERRUN
(ACO/PEAKXD TEST G140L (15)) Warning (Form): COS ACQ/PEAKD exposure should be preceded by an ACO/PEAKXD exposure in the Visit

Proposal 12797 - ACQ/PEAKXD TEST G140L (15) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{.$.
Targ. Coord. Corrections Fluxes

Proper Motion RA: -0.0003 sec of time/yr	$\mathrm{V}=12.48$
Proper Motion Dec: $-0.0035 \mathrm{arcsec} / \mathrm{yr}$	$(\mathrm{B}-\mathrm{V})=+0.04$

Comments: B2Ia, Magellanic Clouds. Nominal ETC exposure times from spectrum supplied by D. Lennon:
NUV, MIRRORA, BOA: 27s (COS.ta.360711)
FUV, G130M, 1309, PSA: 2s (COS.sa.360701) \& 182s S/N=10 spectroscopy (COS.sp.360698)
FUV, G140L, 1105: 038s S/N=10 spectroscopy (COS.sp.389720)
FUV, G160M, 1600:0215s S/N=10 spectroscopy (COS.sp.389715)

(5)	$\begin{aligned} & \text { AZV18-OFFSET- } \\ & \text { XD+0.5 } \end{aligned}$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+0.5)
		RA Offset: -1.25876E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS
		Dec Offset: 0.211309 Arcsec		

Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is $250+/-2.5 d$ (visits 3-5)
AZV18 offset for ACQ/PEAKXD
$(A D, X D)=\left(0,-0.5^{\prime \prime}\right)=-0.5^{\prime \prime} @ 25^{\circ} S$ of E
$R A=-0.5^{\prime \prime} *$
$R A=-0.5^{\prime \prime *} \cos \left(25^{\circ}\right)=-0.453154^{\prime \prime}=-0.000125876^{\circ}$
$D E C=0.5^{\prime \prime *} \sin \left(25^{\circ}\right)=0.211309^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the -0.5, -1.0, \& -1.5 offsets
$R A(") D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
Fixed Targets
-0.9060.423-2.51752E-04
-1.3590.634-3.77628E-04
10) AZV18-OFFSE

XD+1.0
Offset from AZV18 by
RA Offset: $-2.51752 \mathrm{E}-4$ Degrees
Dec Offset: 0.422618 Arcsec
$\mathrm{V}=12.48 \quad$ Offset Position (AZV18-OFFSET-XD+1.0)

Dec Offset: 0.422618 Arcsec
Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is $250+/-2.5 d$ (visits 3-5)
AZV18 1.0" offset for ACQ/PEAKD $\left(0,-1.0^{\prime \prime}\right)=-1 " @ 25^{\circ} S$ of E
$R A=-1.0^{\prime \prime *} * \cos \left(20^{\circ}\right)=-0.906308^{\prime \prime}=-0.000251752^{\circ}$
$D E C=1.0^{\prime \prime *} \sin \left(20^{\circ}\right)=0.422618^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A\left({ }^{\prime \prime}\right) D E C\left({ }^{\prime \prime}\right) R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
-0.9060.423-2.51752E-04

(15)	$\begin{aligned} & \text { AZV18-OFFSET- } \\ & \text { XD+1.5 } \end{aligned}$	Offset from AZV18 by	$\mathrm{V}=12.48$	Offset Position (AZV18-OFFSET-XD+1.5)
		RA Offset: -3.77628E-4 Degrees	$(\mathrm{B}-\mathrm{V})=+0.04$	Reference Frame: ICRS

Comments: This target is offset 1.0" in the XD direction, and is valid for visits 3-5 only.
The roll angle for 13-Jun-2012 till 30-Jun-2012 is 250 +/-2.5d (visits 3-5)
AZV18 1.5" offset for ACQ/PEAKD
(0,-1.5") $=-1.5^{\prime \prime} @ 25^{\circ} S$ of E
$R A=-1.5^{\prime \prime *} \cos \left(20^{\circ}\right)=-1.35946=-0.000377628^{\circ}$
RA=-1.5
$D E C=1.5^{\prime *} \sin \left(20^{\circ}\right)=0.633927^{\prime \prime}$
Olivia's confirmation spreadsheet gives the following for the $-0.5,-1.0, \&-1.5$ offsets
$R A(") D E C(") R A\left({ }^{\circ}\right)$
-0.4530.211-1.25876E-04
$13590.6343 .77628 E-04$

Proposal 12797 - ACQ/PEAKXD TEST G140L (15) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{.$.

[^1]Proposal 12797-ACQ/PEAKXD TEST G140L (15) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{...

COS/FUV, TIME-TAG, PSA
G140L
1280 A
BUF
$0 ;$
FP-POS=3;
PECTRUM
(COS.sp. 389
720)

FLASH=YES;
LIFETIME-POS=A
LTERNATE
 decent look at the spectrum, so we'll observe for 20 seconds.
However, since it is heavily vignetted we double the exposure time to 30s for the +/-1.1"

10	G140L-PO (1) AZV18	COS/FUV, TIME-TAG, PSA	G140L	BUFFER-TIME=40	POS TARG null,-0.6	Sequence 6-16 Non-I	20 Secs	
	STARG + S		80 A			nt in ACQ/PEAKXD	[==>]	
	PECTRUM			FP-POS=3;		TEST G140L (15)	[=->]	
	(COS.sp. 389			FLASH=YES;				[1]
	720)			LIFETIME-POS=A LTERNATE				

 decent look at the spectrum, so we'll observe for 20 seconds
11 G140L - PO (1) AZV18 COS/FUV, TIME-TAG, PSA STARG + S
PECTRUM
4
(COS.sp. 389
720)

G140L
 1280 A

BUFFER-TII
POS TARG null,-0.3 $\begin{array}{ll}\text { Sequence 6-16 Non-I } & 20 \text { Secs } \\ \end{array}$
nt in ACQ/PEAKXD

FP-POS=3;
FLASH=YES;
TEST G140L (15)

LIFETIME-POS=A

LTERNATE
 decent look at the spectrum, so we'll observe for 20 seconds.

12	G140L - PO (1) AZV18	COS/FUV, TIME-TAG, PSA	G140L	BUFFER-TIME=40	POS TARG null,0.3	Sequence 6-16 Non-I	20 Secs	
	STARG + S		1280 A	$0 ;$		nt in ACQ/PEAKXD	[==>]	
	$\begin{aligned} & \text { P1 } \\ & \hline \end{aligned}$			FP-POS=3;		TEST G140L(15)		
	(COS.sp. 389			FLASH=YES;				[1]
	720)			LIFETIME-POS=A LTERNATE				

Comments: POSTARG TO Move to $Y=0.3^{\prime \prime}$. COS.sp. 389720 give
decent look at the spectrum, so we'll observe for 20 seconds

G140L - PO (1) AZV18	COS/FUV, TIME-TAG, PSA	G140L	BUFFER-TIME=40	POS TARG null,0.6	Sequence 6-16 Non-I	20 Secs	
STARG + S		1280 A	0 ;		nt in ACQ/PEAKXD	[==>]	
${ }_{6}$ PECTRUM			FP-POS=3;		TEST G140L (15)	[=->]	
(COS.sp. 389			FLASH=YES;				[1]
720)			LIFETIME-POS=A LTERNATE				

 decent look at the spectrum, so we'll observe for 20 seconds.

14	G140L - PO (1) AZV18	COS/FUV, TIME-TAG, PSA	G140L	BUFFER-TIME=40	POS TARG null,1.1	Sequence 6-16 Non-I	30 Secs	
	STARG + S		1280 A			nt in ACQ/PEAKXD	[==>]	
	PECTRUM 7			FP-POS=3;		TEST G140L (15)	[
	(COS.sp. 389			FLASH=YES;				[1]
	720)			LIFETIME-POS=A LTERNATE				

 decent look at the spectrum, so we'll observe for 20 seconds.
However, since it is heavily vignetted we double the exposure time to 30 s for the $+/-1.1^{\prime \prime}$.

Proposal 12797 - ACQ/PEAKXD TEST G140L (15) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update _...

Proposal 12797-ACQ/PEAKXD TEST G140L (15) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{...

Proposal 12797 - ACQ/PEAKXD TEST G140L (15) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{.$.

30	G140L - BA (1) AZV18 SELINE SP ECTRUM (COS.sp. 389 720)	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G140L } \\ & 1280 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { BUFFER-TIME=40 } \\ & 0 ; \\ & \text { FP-POS=3; } \\ & \text { FLASH=YES; } \\ & \text { LIFETIME-POS=A } \\ & \text { LTERNATE } \end{aligned}$		Sequence 29-30 Non -Int in ACQ/PEAKX D TEST G140L (15)	㐌 $4==>]$	[2]
Comments: Confirmation Spectrum. COS.sp. 389720 gives S/N/RE $=10$ at $1400.00 \AA$ in 38.5800 seconds. $B T=2 / 3(838 * 0.75)=420$ (we use 400)								
31	1 BOA-G140 (1) AZV18	COS/FUV, TIME-TAG, BOA					832 Secs	
	$\begin{aligned} & \text { L } \\ & \text { (COS.sp. } 389 \\ & \text { 922) } \end{aligned}$		$1280 \mathrm{~A}$	LTERNATE; BUFFER-TIME=40 00 ; FP-POS=3			[==>]	[2]
Comments: COS.sp. 389922								
Exposure time (seconds) $=2,000.0000$ at wavelength 1310.00 A gives: $S N R=5.5036$ (per resolution element) Time shorted because we added in the PEAKD at the beginning of the visit.								
	32 S/C to RES DARK	S/C, DATA, NONE			SPEC COM INSTR ELOSMPATCH;		8 Secs	
	ET the G140						[==>]	
	s				QESIPARM ACTIO N REPLACE;			
					QESIPARM GRATI NG G140L;			[2]
					QESIPARM CENT WAVE 1280;			
					QESIPARM FOCUS 19			
Comments: Special Commanding to RESET the G140L/1280 settings to the nominal value (19).								
The SCR 344 FSW has the following focus G140L positions;								
const pcmech_OSM_position_table_struct pcmech_OSMTbl[MECH_OSM_TABLE_SIZE] =								
$\begin{array}{ll} \{1,1105, & 1598,-370,35092,39716\}, \\ \{1,1230,1591, & -30, ~ 35055, ~ 39680\}, \end{array} / * \text { G140L, OSM1 */ }$								

Proposal 12797-ACQ/PEAKXD TEST G140L (15) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{...

GS Reacy
Exp. 17

Fointing Meneuver

Exp. 19
(4i) Exp. 20
Pointing Meneuver
Exp. 21
(יㅏ) Exp. 22
Pointing Maneuver
Exp. 23
(") Exp. 24
Fointing Meneuver
Exp. 25
(in) Exp. 26
Pointing Maneuver
Exp. 27
(יㅏ) Exp. 28
Fointing Meneuver
Exp. 29
(4) Exp. 30

Docultation
*** VISIBLITTY ロVERRLN $=13$
Exp. 31 (Auto-WAVECAL)
Exp. 32
Home

$\frac{\pi}{\pi}$	Proposal 12797, Verification Visit (16), implementation Diagnostic Status: Warning Scientific Instruments: COS/NUV, S/C, COS/FUV Special Requirements: ORIENT 132.5D TO 137.5 D; BETWEEN 23-JUL-2012 AND 30-JUL-2012; ON HOLD Comments: Test ACQ/PEAKXD for each grating, then perform two full TA sequences, one with G160M, one with G130M. Orientation for Visit 6 is (135 +/- 2.5), which is good from Jul 02, to Aug 07, 2012. After that, we will need to change the roll angle and redefine the targets. We now start with a G130M PEAKXD to see if the SIAF file is off in the XD. This visit retains the focus adjustments, but not the HV ramp up/down. On Hold Comments: This visit shows the actual Verification visit without the HV rampup overheads.			
	(Verification Visit (16)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/PEAKXD. (Verification Visit (16)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting. (Verification Visit (16)) Warning (Form): If the target coordinates are not known to $0.4^{\prime \prime}$ (or better) an ACQ/SEARCH should precede the ACQ/IMAGE.			
	\# Name Target Coordinates	Targ. Coord. Corrections	Fluxes	Miscellaneous
	(2) WD1657+343 \quad RA: $165851.1200(254.7130000 \mathrm{~d})$ Dec: $+341853.30(34.31481 \mathrm{~d})$ Equinox: J2000 Comments: This object is visible all year. The roll angle for the offsets is set Proper Motions from 2008ApJS..175.297A and are [12,-32] mas/yr. The original proposal used [0.0014 sec of time/yr, -0.0342 "/yr]. ICRS coord. (ep=J2000) : $165851.12+341853.3$ The secondary target used is WD1657+343 and the exposure times are based For BOA/MIRRORB/NUV imaging the time is 98s (COS.ta.389915). For PSA/G130M/1309, we get $S / N=60$ in 2.6sec (COS.sa.389905). For PSA/G140L/1280, we get $S / N=60$ in 40 sec (COS.sa.389908). 	Proper Motion RA: $12 \mathrm{mas} / \mathrm{yr}$ Proper Motion Dec: -32 mas/yr Epoch of Position: 2000 Radial Velocity: $78 \mathrm{~km} / \mathrm{sec}$ 5 (Jun 5-12, 2012) um provided by A. Aloisi (extrapo	$\mathrm{V}=16.4+/-0.1$ ength). The non	Reference Frame: ICRS
	```Comments: The new roll angle is set to \(135+/-2.5\). This target is offset \(1^{\prime \prime}\) in \(-X,+Y\) or delta \([A D, X D]=(1,-1)^{\prime \prime}\) WD1657+343 offset for ACQ Sequence for a roll angle of \(135+/-2.5\) \((A D, X D)=\left(0,-1.0^{\prime \prime}\right)=1\) "@ \(45^{\circ} E\) of \(N\) \(R A=+\operatorname{sqrt}(2)^{\prime \prime *} \cos \left(45^{\circ}\right)=+1^{\prime \prime}=0.00027777778^{\circ}\) \(D E C=-\operatorname{sqrt}(2)\) "* \(\sin \left(45^{\circ}\right)=-1^{\prime \prime}\)```		$\mathrm{V}=16.4+/-0.1$	Offset Position (WD1657+343-OFFSET-NW-1.4AS)   Reference Frame: ICRS
		Radial Velocity: $78 \mathrm{~km} / \mathrm{sec}$	$\mathrm{V}=16.4+/-0.1$	Offset Position (WD1657+343-OFFSET-   XD-1.0)   Reference Frame: ICRS

Proposal 12797 - Verification Visit (16) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}


Proposal 12797 - Verification Visit (16) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}


Proposal 12797 - Verification Visit (16) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

11	G140L - BA (22) WD1657+343-   SELINE SP OFFSET-XD-1.0   ECTRUM   (COS.sa. 389   908)	COS/FUV, TIME-TAG, PSA	G140L	BUFFER-TIME=50	Sequence 11-13 Non -Int in Verification V isit (16)	7 Secs	[1]
			$1280 \mathrm{~A}$	0 ;		[==>]	
				FP-POS=3;			
				FLASH=YES;			
				LIFETIME-POS=A LTERNATE			
Comments: COS.sa. 389908 Gives $S / N=60$ for Seg A only in 4 s. $(B T=2 / 3 * 790)=527 \mathrm{~s}$							
12		COS/FUV, ACQ/PEAKXD, PSA		LIFETIME-POS=A LTERNATE	Sequence 11-13 Non -Int in Verification V isit (16)	4 Secs	[1]
			$1280 \mathrm{~A}$			[==>]	
Comments: COS.sa. 389908 Gives $\mathrm{S} / \mathrm{N}=60$ for Seg A only in 4 s . ( $B T=2 / 3 * 790$ ) $=527 \mathrm{~s}$							
13	```G140L - CO (22) WD1657+343- NFIRMATI OFFSET-XD-1.0 ON SPECT RUM (COS.sa. 389 908)```	COS/FUV, TIME-TAG, PSA	$\begin{gathered} \text { G140L } \\ 1280 \mathrm{~A} \end{gathered}$	BUFFER-TIME=70 0;	Sequence 11-13 Non -Int in Verification V isit (16)	10 Secs	[1]
						[==>]	
				FLASH=YES;			
				LIFETIME-POS=A LTERNATE			
Comments: COS.sa. 389908 Gives S/N=60 for Seg A only in 4 s. $(B T=2 / 3 * 790)=527 \mathrm{~s}$							
	G140L - BA   (2) WD1657+343   SELINE SP   ECTRUM   (COS.sa. 389   908)	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G140L } \\ & 1280 \mathrm{~A} \end{aligned}$	BUFFER-TIME=50   0 ;   FP-POS=3;   FLASH=YES;   LIFETIME-POS=A   LTERNATE	Sequence 14-16 Non -Int in Verification V isit (16)	7 Secs	
						[==>]	
							[1]
Comments: COS.sa. 389908 Gives $S / \mathrm{N}=60$ for Seg A only in $4 \mathrm{~s} .(B T=2 / 3 * 790)=527 \mathrm{~s}$							
15	$\begin{aligned} & \text { G140L - PE (2) WD1657+343 } \\ & \text { AKXD-XD } \\ & \text { +1.0 } \\ & \text { (COS.sa. } 389 \\ & \text { 908) } \end{aligned}$	COS/FUV, ACQ/PEAKXD, PSA	$\begin{aligned} & \text { G140L } \\ & 1280 \mathrm{~A} \end{aligned}$	LIFETIME-POS=A   LTERNATE	Sequence 14-16 Non -Int in Verification V isit (16)	4 Secs	
						[==>]	[1]
Comments: COS.sa. 389908 Gives $S / N=60$ for Seg A only in 4 s. $(B T=2 / 3 * 790)=527 \mathrm{~s}$							
${ }^{16}$	```G140L - CO (2) WD1657+343 NFIRMATI ON SPECT RUM (COS.sa. 389 908)```	COS/FUV, TIME-TAG, PSA	$\begin{gathered} \text { G140L } \\ 1280 \mathrm{~A} \end{gathered}$	BUFFER-TIME=50   0 ;   FP-POS=3;   FLASH=YES;   LIFETIME-POS=A   LTERNATE	Sequence 14-16 Non -Int in Verification V isit (16)	10 Secs	
						[==>]	
							[1]
	Comments: COS.sa. 389908 Gives S/N=60 for Seg A only in 4 s . ( $B T=2 / 3 * 790)=527 \mathrm{~s}$						

Proposal 12797 - Verification Visit (16) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}


Proposal 12797 - Verification Visit (16) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}


Comments: ACQ/PEAKD. COS.sa. 389907

Proposal 12797 - Verification Visit (16) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}

30	G160M - C	(21) WD1657+343-	COS/FUV, TIME-TAG, PSA	G160M	BUFFER-TIME=70	POS TARG 0.333,nu	Sequence 24-30 Non	40 Secs	
	ONFIRMA TION SPEC	OFFSET-NW-1.4AS		$1600 \mathrm{~A}$	$0$	$11$	-Int in Verification V isit (16)	[==>]	
	TRUM				FP-POS=3;				
	(COS.sa. 389				FLASH=YES;				[2]
	907)				LIFETIME-POS=A LTERNATE				
Comments: COS.sa.389907. Gives $S / N=60$ for Segment $A$ only in 10.8. wo go for $4 x$ that. $B T=2 / 3 * 1,412$ or $\sim 1,000$. We use 700 to be safe.									
31	G130M - O	(2) WD1657+343	COS/FUV, TIME-TAG, PSA	G130M   1309 A	$\begin{aligned} & \text { BUFFER-TIME }=20 \\ & 0 ; \end{aligned}$		Sequence 31-35 Non -Int in Verification V isit (16)	20 Secs	
	FFSET SPE CTRUM							[==>]	[2]
	(COS.sa. 389				FP-POS=3;   FLASH=YES;   LIFETIME-POS=A   LTERNATE				
	905)								
Comments: ACQ/PEAKXD. COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in $3 \mathrm{~s} . \mathrm{BT}=2 / 3 * 476$									
32	G130M - PE	(2) WD1657+343	COS/FUV, ACQ/PEAKXD, PSA	G130M	LIFETIME-POS=A LTERNATE		Sequence 31-35 Non -Int in Verification V isit (16)	3 Secs	
	$\begin{aligned} & \text { AKXD } \\ & \text { (COS.sa. } 389 \\ & 905 \text { ) } \end{aligned}$			1309 A				[==>]	[2]
Comments: ACQ/PEAKXD. COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in 3 s . The target should be offset by 1 " in both AD and XD, so this is a challenging TA.									
33	G130M - C	(2) WD $1657+343$	COS/FUV, TIME-TAG, PSA	G130M	$\text { BUFFER-TIME }=20$$0$		Sequence 31-35 Non -Int in Verification V isit (16)	60 Secs	[2]
	ONFIRMA TION SPEC			$1309 \mathrm{~A}$				[==>]	
	TRUM				FP-POS=3;   FLASH=YES;   LIFETIME-POS=A   LTERNATE				
	(COS.sa. 389								
	905)								
Comments: ACQ/PEAKXD. COS.sa. 389905 Gives $=40.000$ for Segment A only in $1.16 \mathrm{~S} / \mathrm{N}=60$ in 3 s									
34	G130M - PE	(2) WD1657+343	COS/FUV, ACQ/PEAKD, PSA	G130M	NUM-POS=5;		Sequence 31-35 Non -Int in Verification V isit (16)	3 Secs	
	$\begin{aligned} & \text { AKD } \\ & \text { (COS.sa. } 389 \end{aligned}$			1309 A	STEP-SIZE=0.8;			[==>]	
	905)				LIFETIME-POS=A   LTERNATE				[2]
Comments: ACQ/PEAKD. COS.sa. 389905 Gives S/N=40 for Segment A only in 1.2s, S/N=60 in 3s. The target should be offset by 1 " in both AD and XD, so this is a challenging TA.									
35	G130M - C	(2) WD1657+343	COS/FUV, TIME-TAG, PSA	$\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$	BUFFER-TIME=20   0 ;   FP-POS=3;   FLASH=YES;   LIFETIME-POS=A   LTERNATE		Sequence 31-35 Non -Int in Verification V isit (16)	60 Secs	[2]
	ONFIRMA   TION SPEC						[==>]		
	TRUM								
	$\begin{aligned} & \text { (COS.sa. } 389 \\ & 905 \text { ) } \end{aligned}$								

Comments: Confirmation Spectrum on Centered Target. ACQ/PEAKXD. COS.sa. 389905 Gives $S / N=40$ for Segment $A$ only in 1.16 S/N=60 in $3 s$

Proposal 12797 - Verification Visit (16) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}


Proposal 12797 - Verification Visit (16) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}


Proposal 12797 - Verification Visit (16) - Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{FENA4\}



[^0]:    to be safe), due to time constraints, the exposure time has been dropped to 140 s .

[^1]:    Comments: ACQ/PEAKD of a centered target on the same 9x0.4" pattern. . $S / N=60$ is reached in 2 seconds. This exposure and the next should be considered a NON-INT sequence

