Proposal 13192 (STScI Edit Number: 5, Created: Friday, May 3, 2019 at 10:00:33 PM Eastern Standard Time) - Overview



## 13192 - COS Side 2 Initial NUV Channel Checkout

Cycle: 26, Proposal Category: CAL/COS (Availability Mode: RESTRICTED)

#### INVESTIGATORS

| Name                                       | Institution                             | E-Mail             |  |
|--------------------------------------------|-----------------------------------------|--------------------|--|
| Dr. David J. Sahnow (PI) (Contact)         | Space Telescope Science Institute       | sahnow@stsci.edu   |  |
| Dr. Cristina Oliveira (CoI)                | Space Telescope Science Institute       | oliveira@stsci.edu |  |
| Dr. Bethan Lesley James (CoI) (ESA Member) | Space Telescope Science Institute - ESA | bjames@stsci.edu   |  |

#### VISITS

| Visit | Targets used in Visit | Configurations used in Visit | Orbits Used | Last Orbit Planner Run | <b>OP</b> Current with Visit? |
|-------|-----------------------|------------------------------|-------------|------------------------|-------------------------------|
| 01    | NONE<br>WAVE          | COS<br>COS/NUV               | 1           | 03-May-2019 23:00:18.0 | yes                           |
| 02    | (1) NGC188-41<br>NONE | COS<br>COS/NUV               | 2           | 03-May-2019 23:00:24.0 | yes                           |
| 03    | (2) IDK-M002<br>NONE  | COS<br>COS/NUV               | 3           | 03-May-2019 23:00:31.0 | yes                           |

6 Total Orbits Used

#### ABSTRACT

This program will perform an initial checkout of the NUV channel after switching the instrument to use the Side 2 electronics. The location of the aperture will be checked using the internal wavecal lamp, and an NUV focus run will be made to verify that the focus has not changed.

# Proposal 13192 (STScI Edit Number: 5, Created: Friday, May 3, 2019 at 10:00:33 PM Eastern Standard Time) - Overview **OBSERVING DESCRIPTION**

This program consists of two visits.

Visit 01 (Internal):

Images of the wavecal lamp will be taken at the nominal Side 2 aperture position, plus at offset positions in both dispersion and cross-dispersion direction in order to verify that the images and spectra will fall within the same subarrays used on Side 1.

Visit 02 (External): An NUV focus sweep will be done to verify that the focus is at the expected location. This is based on the one done in Program 11469. See ISR 2010-04

----- Additional Comments ------

Scheduling constraints:

\*This program should execute after program 13189 (COS Side 2 NUV Detector Recovery After MEB Side Switch) completes.

\*\* following a success oriented approach this version of the program removes constraints between visits in this program and changes the ID of the program used in the only remaining constraint - C. Oliveira \*\*

#### Brief Summary of Analysis Plan:

Visit 01: The location of the reference spot at (0",0") will be measured and compared to the nominal location from side 1. The side 1 data used for the comparison should be from a target acquisition image using MIRRORA/PSA obtained as closely as possible in time to the side 2 data. This is because there is a secular motion of the lamp spot along both the dispersion and cross-dispersion directions. The analysis will take into account that there is a scatter in the position of the image of the wavecal from exposure to exposure. At the time of writing this scatter is approximately +/-30 pix in the dispersion direction, and +/-3 pix in the cross-dispersion direction.

Visit 02: To verify that the focus remains unchanged the FWHM of the spots on the detector as a function of focus offset will be measured and compared to data obtained in program 11469 in SMOV. Note that an NUV focus sweep will be executed in the Cycle 21 calibration program to verify that the NUV focus has not changed since SMOV. The analysis of side 2 data should take the results of the Cycle 21 program into account.

\*\*\*May 2019: One Gyro Contingency Visits Added\*\*\*:

One additional contingency visit was added to this program, which contains a target that can be used if HST is operating in one-gyro mode and NGC188-41 is not visible. Under one-gyro mode, NGC188-41 is not continuously visible. The target added (IDK-M002) was chosen to have visibility windows that complement NGC188-41 under one-gyro operations, such that this program can be be executed at any time. The comparison data for the focus sweep using the new target was obtained in Program 15681 (PI Sahnow).

#### PLEASE NOTE:

- If HST is operating under three-gyro mode, do NOT execute contingency visit 03.

- If HST is operating under one-gyro mode at the time of Side-1 electronics failure, AND NGC188-41 is not visible, execute contingency Visit 03, along with Visit 01.

#### Proposal 13192 - Wavecal Exposures (01) - COS Side 2 Initial NUV Channel Checkout

|             | Proposal 13192, Wavecal Exposures (01), implementation                                                                                                                      | Sat May 04 03:00:33 GMT 2019 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| ÷           | Diagnostic Status: Warning                                                                                                                                                  |                              |
| /is         | Scientific Instruments: COS, COS/NUV                                                                                                                                        |                              |
| -           | Special Requirements: (none)                                                                                                                                                |                              |
|             | Comments: This visit will verify that the aperture is in the right location, and will collect exposures at several offset positions to allow it to be adjusted if it isn't. |                              |
| Diagnostics | (Wavecal Exposures (01)) Warning (Orbit Planner): MAXIMUM DURATION EXCEEDED FOR INTERNAL OR EARTH CALIB SU                                                                  |                              |

## Proposal 13192 - Wavecal Exposures (01) - COS Side 2 Initial NUV Channel Checkout

| I         Nervoid         Warrend         Bit Sees, (B) Seas)         III.           Comment: MV Exposure of normal position.         III.         III.         III.           Some exposure dine air Forgana 1262         III.         III.         III.           Comment: MV Exposure of normal position.         III.         III.         III.           Some exposure dine air Forgana 1262         III.         III.         III.           Comment: Aperture mored to aggretunately (-0.50.5) arcsecond in (digrerion, cross-digrerion).         III.         III.           3         Wessed         WANK         COSN-LV, TIME-TAG, WCA         MIRRORA         III.           Comment: MV Exposure at offer position.         III.         III.         III.         III.           Comment: Aperture mored to -0.50.00 arcsecond in (digrerion, cross-dispersion).         III.         III.         III.           Comment: Aperture need to -0.50.00 arcsecond in (dispersion, cross-dispersion).         III.         IIII.         III.           Comment: Aperture need to -0.50.00 arcsecond in (dispersion, cross-dispersion).         IIII.         IIII.         IIII.           Comment: Aperture need to -0.50.01 arcsecond Aperture in a offer position.         IIII.         IIII.         IIII.           Comment: Aperture at (NNNK         COS, ALIONAPPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #          | Label                        | Target                 | Config,Mode,Aperture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spectral Els.         | Opt. Params.                  | Special Reqs.            | Groups                    | Exp. Time (Total)/[Actual Dur.] | Orbit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|--------------------------|---------------------------|---------------------------------|-------|
| $ \begin{vmatrix} l = -l & l \\ l \\ (commons: NULL Exposure at nominal position. \\ Since exponent time at Program 12424 \\ 2 A depende at (NONE COS, ALIGNAPER VAPER: 10, VAPER-10, U \\ (l = -l) & l \\ (l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1          | Wavecal                      | WAVE                   | COS/NUV, TIME-TAG, WCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIRRORA               |                               |                          |                           | 30 Secs (30 Secs)               |       |
| Comment: NV Exposure in a onomial position.         Same exposure line as Program 2644         Comment: Aperture nured to approximately (-05, -05) arraceonds in (dispersion, cross-dispersion). Sole is -00.076 arcsec/TAPER step (dispersion), and -0.076 arcsec/TAPER step (cross-dispersion).         3       Warced       WAVE       COS.NUV, TIME-TAG, WCA       MIRRORA       [1=>1]       [1]         Comments: NV Exposure at offset position.       COS.NUV, TIME-TAG, WCA       MIRRORA       [2]       [1]       [1]         Comments: NV Exposure at offset position.       COS.NUV, TIME-TAG, WCA       MIRRORA       [2]       [1]       [1]         Comments: NV Exposure at offset position.       COS.NUV, TIME-TAG, WCA       MIRRORA       [2]       [1]       [1]         4       Aperture numered to (-0, +0.0) arraceonds in (dispersion, cross-dispersion), Stoke is +0.0076 arcsec?TAPER step (dispersion), and -0.0176 arcsec?TAPER step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |                          |                           | [==>]                           | [1]   |
| Some expanse ison of Propent 5124         Observed System           2         Aperture of NONE         COS, ALIGNAPER         VAPER=10;         [1=-2]         [1]           3         Wavesal         WAVE         COSNUV, TIME: TAG, WCA         MIRRORA         [1=-2]         [1]           4         Aperture numed to approximately (-0.5, -0.5) arcseconds in (dispersion, cross-dispersion); Scale is +0.076 arcsec/TAPER step (dispersion), and -0.076 arcs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cor        | mments: NUV E                | Exposure at nor        | minal position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |                          |                           |                                 |       |
| 2       Apprint all (NORE       COS. ALLON APLE       IAPLE-10:       III         2       Apprint all (NORE       COS NULV, TIME-TAG, WCA       MIRRORA       III         3       Waresel       WAYE       COS NULV, TIME-TAG, WCA       MIRRORA       IIII         4       Apprint all (NORE       COS NULV, TIME-TAG, WCA       MIRRORA       IIII       IIII         4       Apprint all (NORE       COS NULV, TIME-TAG, WCA       MIRRORA       IIIII       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | San        | ne exposure tim              | <u>ie as Program 3</u> | <u>12424</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | VADED 10.                     |                          |                           |                                 | 1     |
| Comment: Aperture moved in approximately (-0.5, -0.5) are seconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/APER sep (dispersion), and 0.0476 arcsec/APER sep (cross-dispersion).       DSecs. (DSecs)       []==-1       []]         3       Waveed       WAVE       COSNUV, TIME-TAG, WCA       MIRRORA       []]       []]       []]==-1       []]         4       Aperture at offset position.       []]       []]       []]       []]       []]       []]       []]]       []]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2          | Aperture at (<br>-0.50.5)    | NONE                   | CUS, ALIGN/APEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | YAPER=-10;                    |                          |                           | U Secs (U Secs)                 |       |
| Lomments: APProve Norvel an approximation of apperson, trans-apperson, source to reserve t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Co         |                              |                        | and the second sec |                       | APEK=10.                      | E                        | (mand 0)                  | [==>]                           | [1]   |
| 5       Value U VII       Colorer, Hull-Frid, WCA       MIRKNAK         Comment: NUV Exposure at offset position.       III         4       Aperture and ( $0.05, \pm 0.0$ ) arcseconds in (dispersion, cross-dispersion). See is $\pm 0.0476$ arcsec/VAPER step (dispersion), and $0.0476$ arcsec/VAPER step (dispersion), and $0.0476$ arcsec/VAPER step (dispersion).         5       Wavecal       WAVE       COS.ALIGNAPER       YAPER-10;<br>(I = > ]       III         6       Aperture at offset position.       0 Secs. (0 Secs)       III         7       Wavecal       WAVE       COS.ALIGNAPER       YAPER-10;<br>(I = > ]       III         6       Aperture at (NONE       COS.ALIGNAPER       YAPER-10;<br>(I = > ]       III         7       Wavecal       WAVE       COSNUV, TIME-TAG, WCA       MIRRORA       20 Secs. (0 Secs)       III         7       Wavecal       WAVE       COSNUV, TIME-TAG, WCA       MIRRORA       20 Secs. (0 Secs)       III         7       Wavecal       WAVE       COSNUV, TIME-TAG, WCA       MIRRORA       20 Secs. (0 Secs)       IIII         8       Aperture at (NONE       COS, ALIGNAPER       YAPER-10,       IIII       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3          | Wayacal                      | wave                   | COS/NUV TIME TAG WCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MIDDODA               | <i>200). Scale is</i> +0.0470 | arcsec/IAPEK step (at    | ispersion), and -0.0      | 30 Sacs (30 Sacs)               |       |
| Comment: NUV Exposure at offset position. $  z=2 $ $  z =2 $ $  z =2 $ $  z =2 $ 4 Aperture at (1 NONE       COS, ALIGN/APER       YAPER=-10;<br>XAPER=0. $  z=2 $ $  z =2 $ $  z =2 $ 1 Comments: Aperture moved to (-0.5,+0.0) arcseconds in (dispersion, cross-dispersion). Scale is -0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER atep (cross-dispersion). $  z=2 $ $  z =2 $ $  z =2 $ 5 Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA $  z=2 $ $  z =2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5          | wavecai                      | WAVE                   | COS/NOV, HIME-TAO, WCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIKKOKA               |                               |                          |                           |                                 | [1]   |
| Comments: Aperture and Cody, position         D Sees (0 Sees)         []           4         Aperture at (NONE         COS, ALIGN/APER         YAPER=-0.         []           5         Wavecal         WAVE         COS/NUV, TIME-TAG, WCA         MIRRORA         []         []         []           6         Aperture at (NONE         COS, ALIGN/APER         YAPER=-10;         []         []         []         []           7         Wavecal         WAVE         COS/NUV, TIME-TAG, WCA         MIRRORA         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Co         | mments• NI/V I               | Exposure at off        | feet position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                               |                          |                           | [>]                             | [1]   |
| $a_{3}, (0, 0)$ XAPER=0. $[a=>]$ $[U]$ Comments: Aperture moved to (-0.5, 10.0) arcseconds in (dispersion, cross-dispersion), Scale is 10.076 arcsec/APER step (dispersion), and -0.0476 arcsec/APER step (dispersion),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4          | Aperture at (                | NONE                   | COS. ALIGN/APER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | YAPER=-10:                    |                          |                           | 0 Secs (0 Secs)                 |       |
| Comments: Aperture moved to (-0.5, t-0.0) arcseconds in (dispersion, cross-dispersion). Scale is + 0.0476 arcsec?YAPER step (dispersion), and -0.0476 arcsec?XAPER step (cross-dispersion).       1         5       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       1         6       Aperture and (NONE       COS, ALIGN/APER       YAPER=-10.       1       1         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       1       1         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -0.5,+0.0)                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | XAPER=0.                      |                          |                           | [==>]                           | [1]   |
| 5       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA $[1=>7]$ [J]         6       Aperture at (NONE       COS, ALIGN/APER       YAPER=-10;       [Sees: (0 Sees: )]       [J]         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       [Sees: (0 Sees: )]       [J]         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       [Sees: (0 Sees: )]       [J]         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       [Sees: (0 Sees: )]       [J]         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       [Sees: (0 Sees: )]       [J]         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       [Sees: (0 Sees: )]       [J]         8       Aperture at (NONE       COS, ALIGN/APER       YAPER=-10;       [Sees: (0 Sees: )]       [J]         9       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       [Sees: (0 Sees: )]       [J]         10       Aperture at (NONE       COS, ALIGN/APER       YAPER=-10;       [Sees: (0 Sees: )]       [J]         10       Comments: NUV Exposure at offset position.       [sees: (0 Sees: )]       [sees: (0 Sees: )]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Со         | mments: Apertu               | ure moved to (-(       | (0.5, +0.0) arcseconds in (dispersion, cross-di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | spersion). Scale is - | +0.0476 arcsec/YAPE           | R step (dispersion), and | 1 -0.0476 arcsec/XA       | APER step (cross-dispersion).   | 1 1-1 |
| Comments: NUV Exposure at offset position.       IIII         6       Aperture at (NONE       COS, ALIGN/APER       YAPER=-10.       IIII         Comments: Aperture moved to (-0.5,+0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/APER step (dispersion), and -0.0476 arcsec/APER step (cross-dispersion).       7       IIIII         Comments: NUV Exposure at offset position.       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5          | Wavecal                      | WAVE                   | COS/NUV, TIME-TAG, WCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIRRORA               |                               |                          |                           | 30 Secs (30 Secs)               |       |
| Comments: NUV Exposure at offset position.       Cost ALGN/APER       YAPER=10;<br>XAPER=10.       O Secs (0 Secs)       []==]       []]         7       Wavecal       WAVE       COS.ALIGN/APER       MIRRORA       []==>]       []]         7       Wavecal       WAVE       COS.ALIGN/APER       MIRRORA       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []]]       []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |                          |                           | [==>]                           | [1]   |
| 6       Aperture at (_NONE       COS, ALIGN/APER       YAPER=-10;<br>XAPER=-10.       0       III         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       30       Sees (30       III         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       30       Sees (30       III         7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       30       Sees (30       See (30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Co         | mments: NUV F                | Exposure at off:       | set position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                               |                          |                           |                                 |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6          | Aperture at (                | NONE                   | COS, ALIGN/APER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | YAPER=-10;                    |                          |                           | 0 Secs (0 Secs)                 |       |
| Comments: Aperture moved to (-0.5,+0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/YAPER step (cross-dispersion).       30 Secs (30 Secs)         Comments: NUV Exposure at offset position.       Image: Sole of Sole Sole of Sole of Sole of Sole of Sole of Sole of Sole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | -0.5,+0.5)                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | XAPER=-10.                    |                          |                           | [==>]                           | [1]   |
| 7       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA $30 \text{ Secs} (30 \text{ Secs})$ $   _{-> }$ $   _{-> }$ $   _{-> }$ Comments: NUV Exposure at offset position.       8       Aperture at (NONE       COS, ALIGN/APER       YAPER=0;<br>XAPER=-10. $0 \text{ Secs} (0 \text{ Secs})$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $    _{-> }$ $   _{-> }$ $   _{-> }$ $   _{-> }$ $    _{-> }$ $   _{-> }$ $    _{-> }$ $    _{-> }$ $    _{-> }$ $    _{-> }$ $    _{-> }$ $    _{-> }$ $     _{-> }$ $     _{-> }$ $     _{-> }$ $     _{-> }$ $     _{-> }$ $     _{-> }$ $     _{-> }$ $     _{-> }$ $     _{-> }$ $      _{-> }$ $      _{-> }$ $     _{-> }$ $       _{-> }$ $       _{-> }$ $            _{-> }$ <td< td=""><td>Co</td><td>mments: Apertu</td><td>ıre moved to (-(</td><td>0.5,+0.5) arcseconds in (dispersion, cross-di</td><td>spersion). Scale is</td><td>+0.0476 arcsec/YAPE</td><td>R step (dispersion), and</td><td>1 -0.0476 arcsec/XA</td><td>APER step (cross-dispersion).</td><td>-</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co         | mments: Apertu               | ıre moved to (-(       | 0.5,+0.5) arcseconds in (dispersion, cross-di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | spersion). Scale is   | +0.0476 arcsec/YAPE           | R step (dispersion), and | 1 -0.0476 arcsec/XA       | APER step (cross-dispersion).   | -     |
| Image: Solution of the position of the positio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>3</b> 7 | Wavecal                      | WAVE                   | COS/NUV, TIME-TAG, WCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIRRORA               |                               |                          |                           | 30 Secs (30 Secs)               |       |
| Comments: NUV Exposure at offset position.       O Secs. (0 Secs.)       Image: constraint of the position of the position.         8       Aperture at (NONE COS, ALIGN/APER COS/NUV, TIME-TAG, WCA MIRRORA       Image: constraint of the position.       Image: constraint of the position.       Image: constraint of the position.         9       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA MIRRORA       Image: constraint of the position.       Image: constraint of the position.       Image: constraint of the position.         10       Aperture at (NONE COS, ALIGN/APER COS, ALIGN/APER COS, ALIGN/APER COS, ALIGN/APER COS/NUV, TIME-TAG, WCA MIRRORA       Image: constraint of the position.       Image: constraint of the position.         11       Aperture at (NONE COS/NUV, TIME-TAG, WCA MIRRORA       Image: constraint of the position.       Image: constraint of the position.       Image: constraint of the position.         11       Aperture moved to (+0.5, +0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       Image: constraint of the position.         11       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       Image: constraint of the position.         12       Aperture at (NONE (NONE (+0.5, +0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion, and -0.0476 arcsec/XAPER step (cross-dispersion).       Image: constraint of the position.         13       Wavecal <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>[==&gt;]</td> <td>[1]</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5          |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |                          |                           | [==>]                           | [1]   |
| S       Aperture at (NONE       COS, ALIGN/APER       YAPER=0;<br>XAPER=10.       0 Secs (0 Secs)       1         Comments: Aperture moved to (+0.0,+0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       Sole (1)       1         9       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (0 Secs)       1         10       Aperture at offset position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co         | mments: NUV E                | Exposure at off:       | set position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                               |                          |                           |                                 |       |
| $  400, 40.5 \rangle XAPER=-10.   [=>] [1] \\ Comments: Aperture moved to (+0.0, +0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ 9 Wavecal WAVE COS/NUV, TIME-TAG, WCA MIRRORA 30 Sees (30 Sees)   [=>] [1] \\ Comments: NUV Exposure at offset position. \\ 10 Aperture at (NONE COS, ALIGN/APER YAPER=10; [=>] [1] \\ Comments: Aperture moved to (+0.5, +0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ 11 Wavecal WAVE COS/NUV, TIME-TAG, WCA MIRRORA 30 Sees (30 Sees)   [=>] [1] \\ Comments: NUV Exposure at offset position. \\ 12 Aperture at (NONE COS, ALIGN/APER YAPER=10; [=>] [1] \\ Comments: Aperture moved to (+0.5, +0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ 12 Aperture at (NONE COS, ALIGN/APER YAPER=10; [=>] [1] \\ Comments: Aperture moved to (+0.5, +0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ 13 Wavecal WAVE COS/NUV, TIME-TAG, WCA MIRRORA 30 Sees (30 Sees) [==>] [1] \\ Comments: NUV Exposure at offset position. \\ 13 Wavecal WAVE COS/NUV, TIME-TAG, WCA MIRRORA 30 Sees (30 Sees) [==>] [1] \\ Comments: Aperture moved to (+0.5, +0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ 13 Wavecal WAVE COS/NUV, TIME-TAG, WCA MIRRORA 30 Sees (30 Sees) [==>] [1] \\ Comments: NUV Exposure at offset position. \\ 14 Aperture at (NONE COS, ALIGN/APER YAPER=10; []] \\ Comments: NUV Exposure at offset position. \\ 14 Aperture at (NONE COS, ALIGN/APER YAPER=10, []] \\ Comments: NUV Exposure at offset position. \\ 14 Aperture at (NONE COS, ALIGN/APER YAPER=10, []] \\ Comments: NUV Exposure at offset position. \\ 14 Aperture at (NONE COS, ALIG$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8          | Aperture at (                | NONE                   | COS, ALIGN/APER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | YAPER=0;                      |                          |                           | 0 Secs (0 Secs)                 |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | +0.0,+0.5)                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | XAPER=-10.                    |                          |                           | [==>]                           | [1]   |
| 9       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (30 Secs)       [[==>]       [[1]         Comments: NUV Exposure at offset position.       10       Aperture at (       NON E       COS, ALIGN/APER       YAPER=10;       []==>]       [[1]]         Comments: Aperture moved to (+0.5,+0.5)       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (0 Secs)       []==>]       [[1]]         Comments: Aperture moved to (+0.5,+0.5)       arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       []==>]       [[]]         Comments: NUV Exposure at offset position.       30 Secs (0 Secs)       []==>]       [[]]         Comments: NUV Exposure at offset position.       11       KAPER=0       []==>]       []]         Comments: NUV Exposure at offset position.       12       Aperture moved to (+0.5,+0.0)       arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (30 Secs)       []         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (30 Secs)       []         14       Aperture at (       NONE       COS, ALI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Co         | mments: Apertu               | ire moved to (+        | -0.0,+0.5) arcseconds in (dispersion, cross-d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lispersion). Scale is | +0.0476 arcsec/YAPH           | ER step (dispersion), an | d -0.0476 arcsec/X        | APER step (cross-dispersion).   |       |
| $ \begin{bmatrix} [==] & [I] \\ [I] \\ Comments: NUV Exposure at offset position. \\ \hline \\ 10 Aperture at (NONE COS, ALIGN/APER YAPER TO, Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ \hline \\ [==] & [I] \\ \hline \\ Comments: NUV Exposure at offset position. \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$ | 9          | Wavecal                      | WAVE                   | COS/NUV, TIME-TAG, WCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIRRORA               |                               |                          |                           | 30 Secs (30 Secs)               |       |
| Comments: NUV Exposure at offset position.         10       Aperture at (NONE<br>+0.5,+0.5)       COS, ALIGN/APER<br>KAPER=10;<br>XAPER=10.       0 Secs. (0 Secs)<br>[==>]       []         Comments: Aperture moved to (+0.5,+0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       []         11       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       []       []         Comments: NUV Exposure at offset position.       COS, ALIGN/APER       YAPER=10;<br>YAPER=10;<br>(]]       []       []         Comments: NUV Exposure at offset position.       COS, ALIGN/APER       YAPER=10;<br>YAPER=0       []       []         Comments: Aperture moved to (+0.5,+0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       []         12       Aperture at (NONE<br>+0.5,+0.0)       COS, NUV, TIME-TAG, WCA       MIRRORA       []       []         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       []       []         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       []       []       []         14       Aperture at offset position.       II       Aperture at offset position.       []       []       []       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |                          |                           | [==>]                           | [1]   |
| 10       Aperture at (NONE       COS, ALIGN/APER       YAPER=10;<br>XAPER=10.       0 Secs (0 Secs)       []]         Comments: Aperture moved to (+0.5,+0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       []]         11       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (30 Secs)       []]         Comments: NUV Exposure at offset position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coi        | mments: NUV E                | Exposure at offs       | set position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                               |                          |                           |                                 |       |
| +0.5, +0.5       XAPER=-10.       [1]         Comments: Aperture moved to (+0.5, +0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       30 Secs (30 Secs)         11       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       30 Secs (30 Secs)       [1]         Comments: NUV Exposure at offset position.       12       Aperture at (NONE       COS, ALIGN/APER       YAPER=10;<br>XAPER=0       [1]       [1]         Comments: Aperture moved to (+0.5,+0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       [1]         Comments: NUV Exposure at offset position.       13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       30 Secs (0 Secs)       [1]         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       30 Secs (30 Secs)       [1]         Comments: NUV Exposure at offset position.       13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       30 Secs (30 Secs)       [1]         Comments: NUV Exposure at offset position.       14       Aperture at (NONE       COS, ALIGN/APER       YAPER=10;<br>XAPER=10.       [2]       [1]         Comments: Aperture moved to (+0.5,-0.5) arcseconds in (dispersion, cross-dispe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10         | Aperture at (                | NONE                   | COS, ALIGN/APER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | YAPER=10;                     |                          |                           | 0 Secs (0 Secs)                 |       |
| Comments: Aperture moved to $(+0.5, +0.5)$ arcseconds in (dispersion, cross-dispersion). Scale is $+0.0476$ arcsec/YAPER step (dispersion), and $-0.0476$ arcsec/XAPER step (cross-dispersion).         11       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA $30 \text{ Secs } (30 \text{ Secs })$ $[==>]$ [1]         Comments: NUV Exposure at offset position.       Image: constant of the position of the position.         12       Aperture at ( NONE       COS, ALIGN/APER       YAPER=10;<br>XAPER=0       Image: constant of the position.       Image: constant of the position.         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       Image: constant of the position.         14       Aperture at offset position.       Image: constant of the position.       Image: constant of the position.       Image: constant of the position.         14       Aperture at ( NONE       COS, ALIGN/APER       YAPER=10;<br>XAPER=10.       Image: constant of the position.       Image: constant of the position.         14       Aperture moved to (+0.5, -0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       Image: constant of the position.         14       Aperture at ( NONE       COS, ALIGN/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | +0.5,+0.5)                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | XAPER=-10.                    |                          |                           | [==>]                           | [1]   |
| 11       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA $30 \text{ Secs } (30 \text{ Secs })$ $[=>]$ $[I]$ Comments: NUV Exposure at offset position.       COS, ALIGN/APER       YAPER=10; $[=>]$ $[I]$ 12       Aperture at ( NONE       COS, ALIGN/APER       YAPER=10; $[=>]$ $[I]$ Comments: Aperture moved to (+0.5,+0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       II]         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (30 Secs) $[=>]$ $[I]$ Comments: NUV Exposure at offset position.       III       Comments: NUV Exposure at offset position.       30 Secs (30 Secs) $[=>]$ $[I]$ I4       Aperture at ( NONE       COS, ALIGN/APER       YAPER=10; $[=>]$ $[I]$ Comments: Aperture moved to (+0.5,-0.5)       arcseconds in (dispersion), cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). $[==>]$ $[I]$ Comments: Aperture moved to (+0.5,-0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). $[I]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Con        | mments: Apertu               | ire moved to (+        | -0.5,+0.5) arcseconds in (dispersion, cross-d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lispersion). Scale is | +0.0476 arcsec/YAPH           | ER step (dispersion), an | d -0.0476 arcsec/X        | APER step (cross-dispersion).   |       |
| $ \begin{bmatrix} [=>] & [1] \\ [=>] & [1] \\ [=>] & [1] \\ \hline Comments: NUV Exposure at offset position. \\ \hline 12 & Aperture at ( NONE & COS, ALIGN/APER & YAPER=10; \\ +0.5,+0.0 & XAPER=0 & [=>] & [1] \\ \hline Comments: Aperture moved to (+0.5,+0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ \hline 13 & Wavecal & WAVE & COS/NUV, TIME-TAG, WCA & MIRORA & 30 Secs (30 Secs) & [==>] & [1] \\ \hline Comments: NUV Exposure at offset position. \\ \hline 14 & Aperture at ( NONE & COS, ALIGN/APER & YAPER=10; \\ +0.5,-0.5) & COS, ALIGN/APER & YAPER=10; \\ +0.5,-0.5) & XAPER=10. & [==>] & [1] \\ \hline Comments: Aperture moved to (+0.5,-0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ \hline Comments: Aperture moved to (+0.5,-0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ \hline Comments: Aperture moved to (+0.5,-0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). \\ \hline \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11         | Wavecal                      | WAVE                   | COS/NUV, TIME-TAG, WCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIRRORA               |                               |                          |                           | 30 Secs (30 Secs)               |       |
| Comments: NUV Exposure at offset position.         12       Aperture at ( NONE<br>+0.5,+0.0)       COS, ALIGN/APER<br>COS, ALIGN/APER       YAPER=10;<br>XAPER=0       0 Secs (0 Secs)       [==>]       [1]         Comments: Aperture moved to (+0.5,+0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       30 Secs (30 Secs)       []         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRORA       30 Secs (30 Secs)       []         14       Aperture at ( NONE<br>+0.5,-0.5)       COS, ALIGN/APER<br>COS, ALIGN/APER       YAPER=10;<br>XAPER=10.       0 Secs (0 Secs)       []         14       Aperture at ( NONE<br>+0.5,-0.5)       COS, ALIGN/APER<br>XAPER=10.       YAPER=10;<br>XAPER=10.       0 Secs (0 Secs)       []         Comments: Aperture moved to (+0.5,-0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                               |                          |                           | [==>]                           | [1]   |
| 12       Aperture at ( NONE +0.5,+0.0)       COS, ALIGN/APER       YAPER=10; XAPER=0       Image: cost of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cor        | mments: NUV E                | Exposure at offs       | set position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                               |                          |                           |                                 |       |
| XAPER=0       []=>]       []]         Comments: Aperture moved to (+0.5,+0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       []]         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (30 Secs)       []]         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (0 Secs)       []]         Comments: NUV Exposure at offset position.       III       []]       []]       []]         Comments: NUV Exposure at offset position.       VAPER=10;       []]       []]         Comments: Aperture at (       NONE       COS, ALIGN/APER       YAPER=10;       []]         +0.5, -0.5)       COS, acseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       []]         Comments: Aperture moved to (+0.5, -0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12         | Aperture at $(+0.5 \pm 0.0)$ | NONE                   | COS, ALIGN/APER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | YAPER=10;                     |                          |                           | 0 Secs (0 Secs)                 |       |
| Comments: Aperture moved to (+0.5,+0.0) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (30 Secs)       []         13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA       30 Secs (0 Secs)       []         14       Aperture at (       NONE       COS, ALIGN/APER       YAPER=10;       0 Secs (0 Secs)       []         14       Aperture at (       NONE       COS, ALIGN/APER       YAPER=10;       []       []         Comments: Aperture moved to (+0.5,-0.5)       arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       []]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | +0.5,+0.0)                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | XAPER=0                       |                          |                           | [==>]                           | [1]   |
| 13       Wavecal       WAVE       COS/NUV, TIME-TAG, WCA       MIRRORA $30 \text{ Secs } (30 \text{ Secs })$ $[]]$ <i>Comments: NUV Exposure at offset position.</i> II $[]=>]$ [I]         14       Aperture at ( NONE<br>+0.5,-0.5)       COS, ALIGN/APER<br>COS, ALIGN/APER       YAPER=10;<br>XAPER=10.       0 Secs (0 Secs)       [] <i>Comments: Aperture moved to</i> (+0.5,-0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).       [I]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Con        | mments: Apertu               | ire moved to (+        | -0.5,+0.0) arcseconds in (dispersion, cross-d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lispersion). Scale is | +0.0476 arcsec/YAPE           | ER step (dispersion), an | <u>d -0.0476 arcsec/X</u> | APER step (cross-dispersion).   |       |
| $[==>] [1]$ Comments: NUV Exposure at offset position. $14  \text{Aperture at (NONE}  COS, \text{ALIGN/APER}  YAPER=10; \\ +0.5, -0.5)  XAPER=10.  [==>]  [1]$ Comments: Aperture moved to (+0.5, -0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13         | Wavecal                      | WAVE                   | COS/NUV, TIME-TAG, WCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIRRORA               |                               |                          |                           | 30 Secs (30 Secs)               |       |
| 14       Aperture at (       NONE       COS, ALIGN/APER       YAPER=10;       0 Secs (0 Secs) $+0.5, -0.5$ ) $COS, ALIGN/APER$ YAPER=10; $I = > I$ $I = > I$ $I = I = > I$ $I = I = > I$ $I = I$ $I = I = I$ $I = I$ $I = I = I$ $I = I$ $I = I = I$ $I = I$ $I = I$ $I = I = I$ $I = I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Со         | mments: NUV H                | Exposure at off        | fset position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                               |                          |                           | [==>]                           | [1]   |
| + $\dot{0.5}$ ,- $0.5$ ) XAPER=10. [1]<br>Comments: Aperture moved to (+ $0.5$ ,- $0.5$ ) arcseconds in (dispersion, cross-dispersion). Scale is + $0.0476$ arcsec/YAPER step (dispersion), and - $0.0476$ arcsec/XAPER step (cross-dispersion).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14         | Aperture at (                | NONE                   | COS, ALIGN/APER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | YAPER=10;                     |                          |                           | 0 Secs (0 Secs)                 |       |
| Comments: Aperture moved to (+0.5,-0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | +0.5,-0.5)                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | XAPER=10.                     |                          |                           | [==>]                           | [1]   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Со         | mments: Apertu               | re moved to (+         | +0.5,-0.5) arcseconds in (dispersion, cross-di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | spersion). Scale is - | +0.0476 arcsec/YAPE           | R step (dispersion), and | 1 -0.0476 arcsec/XF       | APER step (cross-dispersion).   |       |

#### Proposal 13192 - Wavecal Exposures (01) - COS Side 2 Initial NUV Channel Checkout

| 1 | 5 W                                                                                                                                                                                      | avecal       | WAVE                  | COS/NUV, TIME-TAG, WCA | MIRRORA |          | 30 Secs (30 Secs) |     |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|------------------------|---------|----------|-------------------|-----|
|   |                                                                                                                                                                                          |              |                       |                        |         |          | [==>]             | [1] |
| C | ommer                                                                                                                                                                                    | nts: NUV E   | xposure at offset pos | sition.                |         |          |                   |     |
| 1 | 5 Ap                                                                                                                                                                                     | perture at ( | NONE                  | COS, ALIGN/APER        |         | YAPER=0; | 0 Secs (0 Secs)   |     |
|   | +0                                                                                                                                                                                       | +0.0,-0.5)   |                       | XAPER=10.              | [==>]   | [1]      |                   |     |
| C | Comments: Aperture moved to (+0.0,-0.5) arcseconds in (dispersion, cross-dispersion). Scale is +0.0476 arcsec/YAPER step (dispersion), and -0.0476 arcsec/XAPER step (cross-dispersion). |              |                       |                        |         |          |                   |     |
| 1 | 7 W                                                                                                                                                                                      | avecal       | WAVE                  | COS/NUV, TIME-TAG, WCA | MIRRORA |          | 30 Secs (30 Secs) |     |
|   |                                                                                                                                                                                          |              |                       |                        |         |          | [==>]             | [1] |
| C | ommer                                                                                                                                                                                    | nts: NUV E   | xposure at offset pos | sition.                |         |          |                   |     |
| 1 | 8 Ap                                                                                                                                                                                     | perture bac  | NONE                  | COS, ALIGN/APER        |         | YAPER=0; | 0 Secs (0 Secs)   |     |
|   | k t                                                                                                                                                                                      | to (0.0,0.0) |                       |                        |         | XAPER=0  | [==>]             | [1] |
| C | ommer                                                                                                                                                                                    | nts: Move c  | perture back to nom   | inal position          |         |          |                   |     |
| 1 | 9 W                                                                                                                                                                                      | avecal       | WAVE                  | COS/NUV, TIME-TAG, WCA | MIRRORA |          | 30 Secs (30 Secs) |     |
|   |                                                                                                                                                                                          |              |                       |                        |         |          | [==>]             | [1] |
| C | ommer                                                                                                                                                                                    | nts: NUV E   | xposure at nominal p  | position.              |         |          |                   |     |

Proposal 13192 - Wavecal Exposures (01) - COS Side 2 Initial NUV Channel Checkout



|             | Proposal 13192, NUV Focus Sweep                                                                                                                                                                                                                                                                | : NGC188-41 (02), implementation                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             | Sat May 04 03:00:33 GMT 2019                 |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|
|             | Diagnostic Status: Warning                                                                                                                                                                                                                                                                     |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
|             | Scientific Instruments: COS, COS/NU                                                                                                                                                                                                                                                            | UV                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
|             | Special Requirements: SCHED 100%                                                                                                                                                                                                                                                               |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
| Visi        | Comments: This visit will test the NU or so over $a +/-200$ step range.                                                                                                                                                                                                                        | VACQ/IMAGE to verify that it works. It will a                                                                                            | ulso do a fine focus sweep modeled on Program 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69 Visit 94. From ISR 2010-04, the                                                          | PSF FWHM should change by a factor of two    |  |  |  |  |  |
|             | The target, NGC188-41, was used in 11469 NUV Focus sweep. A Visit Planner run in March 2013 shows that it is visible all year. Target visibility will have to be rechecked if operating conditions change, e.g. if there are gyro failures which change the observatory pointing capabilities. |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
|             | Note that APT has a spurious warning                                                                                                                                                                                                                                                           | g for focus sweeps: "This visit contains an AL                                                                                           | IGN/OSM exposure which should be preceded by an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FUV science exposure to define th                                                           | e starting position for the scan."           |  |  |  |  |  |
| Diagnostics | (NUV Focus Sweep: NGC188-41 (02                                                                                                                                                                                                                                                                | ?)) Warning (Form): This visit contains an AL                                                                                            | IGN/OSM exposure which should be preceded by ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n FUV science exposure to define th                                                         | he starting position for the scan.           |  |  |  |  |  |
|             | # Name                                                                                                                                                                                                                                                                                         | Target Coordinates                                                                                                                       | Targ. Coord. Corrections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fluxes                                                                                      | Miscellaneous                                |  |  |  |  |  |
|             | (1) NGC188-41                                                                                                                                                                                                                                                                                  | RA: 00 45 56.6230 (11.4859292d)                                                                                                          | Proper Motion RA: -0.003 sec of time/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V=14.21+/-0.2                                                                               | Reference Frame: GSC1                        |  |  |  |  |  |
|             | Alt Name1: VID-1316-<br>ZZZZ-PLATE                                                                                                                                                                                                                                                             | Dec: +85 17 28.85 (85.29135d)<br>Equinox: J2000<br>Plate Id: ZZZZ                                                                        | Proper Motion Dec: -0.013 arcsec/yr<br>Epoch of Position: 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B-V=0.46 Galex NUV Flux=14<br>; Galex NUV mag=18.47 E(B-<br>V)=0.089; (B-V)intrinsic = 0.37 | 9<br>7                                       |  |  |  |  |  |
|             | Comments: This target was used in Program 11469. The following information is from the Phase II of that program:                                                                                                                                                                               |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
|             | GALEX J004557.4+851728 obj id 2710790968 559273041                                                                                                                                                                                                                                             |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
|             | E(B-V)=0.0888                                                                                                                                                                                                                                                                                  |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
| s           | GALEX NUV flux = 149.11 +/-8.6975                                                                                                                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
| rget        | GALEX NUV mag 18.4662 +/- 0.06.                                                                                                                                                                                                                                                                | 33                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
| Ta          | actual coordinates used from GSC1 p                                                                                                                                                                                                                                                            | late ZZZZ courtesy Matt Lallo                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
| xed         | proper motion from plate ZZZZ (and )                                                                                                                                                                                                                                                           | Matt Lallo) assumption is values in supporting                                                                                           | g table are sec time per year and sec arc per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                              |  |  |  |  |  |
| ίΞ          | This target is on NGC-188 GSC1 spec<br>plate ZZZZ and Lallo determined (25                                                                                                                                                                                                                     | cial astrometric plate ZZZZ and has astrometr<br>June 2008) that there are numerous available                                            | ric coordinates. This star is star 41 on special plate 2<br>potential guide stars for this target.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ZZZZ. See above comment about p.                                                            | roper motion. Keyes and Lallo have inspected |  |  |  |  |  |
|             | Using the above information, the ETC                                                                                                                                                                                                                                                           | C has been run with the following parameters:                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
|             | Spectrum: Castelli-Kurucz Models F2V 7000 4.0<br>Extinction E(B-V): Milky Way Diffuse (Rv=3.1) = 0.09 applied before normalization<br>Normalization: Renormalized to Johnson V = 14.21 in magnitudes relative to Vega                                                                          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                                              |  |  |  |  |  |
|             | The result was COS.im.467283. This,<br>use the GALEX NUV Magnitude inste<br>For completeness, I used the same pa<br>Category=STAR<br>Description=[F3-F9]<br>Extended=NO                                                                                                                        | gave a count rate of 353 c/s, background rate<br>ad of the V magnitude (COS.im.467312), it gi<br>rameters for an ACQ/IMAGE ETC run (COS. | The result was COS.im.467283. This gave a count rate of 353 c/s, background rate = 1 c/s, brightest pixel = 49 c/s, count rate over the entire detector = 1394, SNR = 145 in 60 seconds, BUFFER-TIME = 1691. If I use the GALEX NUV Magnitude instead of the V magnitude (COS.im.467312), it gives rate = 220 c/s, brightest pixel = 31, count rate over the entire detector = 1262, SNR = 115 in 60 seconds, BUFFER-TIME = 1691. If I use the GALEX NUV Magnitude instead of the V magnitude (COS.im.467312), it gives rate = 220 c/s, brightest pixel = 31, count rate over entire detector = 1262, SNR = 115 in 60 seconds, BUFFER-TIME = 1869. For completeness, I used the same parameters for an ACQ/IMAGE ETC run (COS.ta.467306) using the V magnitude and got essentially the same results. Category=STAR Description=[F3-F9] Firended=NQ |                                                                                             |                                              |  |  |  |  |  |

|      | #   | Label<br>(ETC Run)          | Target                 | Config,Mode,Aperture     | Spectral Els. | Opt. Params.     | Special Reqs. | Groups | Exp. Time (Total)/[Actual Dur.] | Orbit   |
|------|-----|-----------------------------|------------------------|--------------------------|---------------|------------------|---------------|--------|---------------------------------|---------|
|      | 1   | PSA ACQ/I                   | (1) NGC188-41          | COS/NUV, ACQ/IMAGE, PSA  | MIRRORA       |                  |               |        | 60 Secs (60 Secs)               |         |
|      |     | MAGE<br>(COS.ta.467<br>306) |                        |                          |               |                  |               |        | [==>]                           | [1]     |
|      | Con | nments: Target              | 1 used in 11469 SMO    | VV NUV Focus program.    |               |                  |               |        |                                 |         |
|      | 2   | Nominal Fo                  | (1) NGC188-41          | COS/NUV, TIME-TAG, PSA   | MIRRORA       | BUFFER-TIME=12   |               |        | 60 Secs (60 Secs)               | <b></b> |
|      |     | e                           |                        |                          |               | 50;<br>FLASH=YES |               |        | [==>]                           |         |
|      |     | (COS.im.46<br>7312)         |                        |                          |               |                  |               |        |                                 | [1]     |
|      | Con | nments: Exposu              | ire at nominal focus p | osition                  |               |                  |               |        |                                 |         |
|      | 3   | Move Focus                  | NONE                   | COS, ALIGN/OSM           |               | FOCUS=-200       |               |        | 0 Secs (0 Secs)                 |         |
|      |     | 10-200<br>(0)               |                        |                          |               |                  |               |        | [==>]                           | [1]     |
|      | Con | nments: Offset t            | to focus position      |                          |               |                  |               |        |                                 |         |
|      | 4   | NUV Expos                   | (1) NGC188-41          | COS/NUV, TIME-TAG, PSA   | MIRRORA       | BUFFER-TIME=12   |               |        | 60 Secs (60 Secs)               |         |
|      |     | (COS.im.46                  |                        |                          |               | 50,<br>FLASH=YES |               |        | [==>]                           | [1]     |
|      | Con | 7312)                       |                        |                          |               |                  |               |        |                                 | _       |
|      | 5   | Move Focus                  | NONF                   | COS ALIGN/OSM            |               | FOCUS=-175       |               |        | A Secs (A Secs)                 | 1       |
|      | 5   | To -175                     | NONE                   | COD, ALIGIVODIN          |               | 10005-175        |               |        | [==>]                           | []]     |
| 6    | Con | (U)<br>                     | to forme position      |                          |               |                  |               |        | L J                             | [+]     |
| lre  | 6   | NUV Expos                   | (1) NGC188-41          | COS/NUV_TIME-TAG_PSA     | MIRRORA       | BUFFER-TIME=12   |               |        | 60 Secs (60 Secs)               |         |
| ารต  | Ŭ   | ure                         | (1)                    | 005,110 1, 1112 1112,121 |               | 50;              |               |        | [==>]                           |         |
| , xp |     | (COS.III.40<br>7312)        |                        |                          |               | FLASH=YES        |               |        | • _                             | [1]     |
| ш    | Con | nments: Exposu              | ire during focus sweer | )                        |               |                  |               |        |                                 | 1       |
|      | 7   | Move Focus                  | NONE                   | COS, ALIGN/OSM           |               | FOCUS=-150       |               |        | 0 Secs (0 Secs)                 | -       |
|      |     | (0)                         |                        |                          |               |                  |               |        | [==>]                           | [1]     |
|      | Con | nments: Offset t            | to focus position      |                          |               |                  |               |        |                                 | T       |
|      | 8   | NUV Expos                   | (1) NGC188-41          | COS/NUV, TIME-TAG, PSA   | MIRRORA       | BUFFER-TIME=12   |               |        | 60 Secs (60 Secs)               |         |
|      |     | (COS.im.46                  |                        |                          |               | FLASH=YES        |               |        | [==>]                           | [1]     |
|      | Con | /312)<br>mants: Exposu      | ure during focus sweet | n                        |               |                  |               |        |                                 |         |
|      | 9   | Move Focus                  | NONE                   | COS, ALIGN/OSM           |               | FOCUS=-125       |               |        | 0 Secs (0 Secs)                 |         |
|      | -   | To -125                     |                        | 000,                     |               |                  |               |        | [==>]                           |         |
|      | Con | (0)<br>nments: Offset t     | to focus position      |                          |               |                  |               |        |                                 | L-J     |
|      | 10  | NUV Expos                   | (1) NGC188-41          | COS/NUV, TIME-TAG, PSA   | MIRRORA       | BUFFER-TIME=12   |               |        | 60 Secs (60 Secs)               |         |
|      |     | ure<br>(COS im 46           | . ,                    |                          |               | 50;              |               |        | [==>]                           |         |
|      |     | 7312)                       |                        |                          |               | FLASH=YES        |               |        |                                 | [1]     |
|      | Con | nments: Exposu              | ire during focus sweep | <u>,</u>                 |               |                  |               |        |                                 | т       |
|      | 11  | Move Focus<br>To -100       | NONE                   | COS, ALIGN/OSM           |               | FOCUS=-100       |               |        | 0 Secs (0 Secs)                 |         |
|      |     | (0)                         |                        |                          |               |                  |               |        | [==>]                           | [1]     |
|      | Con | nments: Offset t            | to focus position      |                          |               |                  |               |        |                                 |         |
|      |     |                             |                        |                          |               |                  |               |        |                                 |         |

#### 12 NUV Expos (1) NGC188-41 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) ure 50: [==>](COS.im.46 [1] FLASH=YES 7312) *Comments: Exposure during focus sweep* 13 Move Focus NONE COS, ALIGN/OSM FOCUS=-75 0 Secs (0 Secs) To -75 [==>] [1] (0)Comments: Offset to focus position 14 NUV Expos (1) NGC188-41 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) 50; ure [==>] (COS.im.46 [1] FLASH=YES 7312) Comments: Exposure during focus sweep 15 Move Focus NONE COS, ALIGN/OSM FOCUS=-50 0 Secs (0 Secs) To -50 [==>] [1] (0)Comments: Offset to focus position 16 NUV Expos (1) NGC188-41 MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) COS/NUV, TIME-TAG, PSA 50; ure [==>] (COS.im.46 [1] FLASH=YES 7312) Comments: Exposure during focus sweep 17 Move Focus NONE COS, ALIGN/OSM FOCUS=-25 0 Secs (0 Secs) To -25 l = > l[1] (0)Comments: Offset to focus position 18 NUV Expos (1) NGC188-41 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) ure 50; [==>] (COS.im.46 [1] FLASH=YES 7312) Comments: Exposure during focus sweep 19 Move to No NONE COS, ALIGN/OSM FOCUS=0 0 Secs (0 Secs) minal Focus [==>] [1] (0)Comments: Nominal Focus Location 20 NUV Expos (1) NGC188-41 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) 50; ure [==>] (COS.im.46 [1] FLASH=YES 7312) Comments: Exposure during focus sweep 21 Move Focus NONE COS, ALIGN/OSM FOCUS=25 0 Secs (0 Secs) To +25 [==>] [1] (0)Comments: Offset to focus position 22 NUV Expos (1) NGC188-41 BUFFER-TIME=12 60 Secs (60 Secs) COS/NUV, TIME-TAG, PSA MIRRORA 50; ure [==>] (COS.im.46 [1] FLASH=YES 7312) *Comments: Exposure during focus sweep* 23 Move Focus NONE COS. ALIGN/OSM FOCUS=50 0 Secs (0 Secs) To +50 [==>] [1] (0)Comments: Offset to focus position

#### 24 NUV Expos (1) NGC188-41 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) ure 50: [==>](COS.im.46 [1] FLASH=YES 7312) *Comments: Exposure during focus sweep* 25 Move Focus NONE COS, ALIGN/OSM FOCUS=75 0 Secs (0 Secs) To +75 [==>] [1] (0)Comments: Offset to focus position 26 NUV Expos (1) NGC188-41 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) 50; ure [==>] (COS.im.46 [1] FLASH=YES 7312) *Comments: Exposure during focus sweep* 27 Move Focus NONE COS, ALIGN/OSM FOCUS=100 0 Secs (0 Secs) To +100 [==>][1] (0)Comments: Offset to focus position 28 NUV Expos (1) NGC188-41 MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) COS/NUV, TIME-TAG, PSA 50; ure [==>] (COS.im.46 [1] FLASH=YES 7312) Comments: Exposure during focus sweep 29 Move Focus NONE COS, ALIGN/OSM FOCUS=125 0 Secs (0 Secs) To +125 l = > l[1] (0)Comments: Offset to focus position 30 NUV Expos (1) NGC188-41 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) ure 50; [==>] (COS.im.46 [1] FLASH=YES 7312) Comments: Exposure during focus sweep 31 Move Focus NONE COS, ALIGN/OSM FOCUS=150 0 Secs (0 Secs) To +150 [==>] [1] (0)Comments: Offset to focus position 32 NUV Expos (1) NGC188-41 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=12 60 Secs (60 Secs) 50; ure [==>] (COS.im.46 [1] FLASH=YES 7312) Comments: Exposure during focus sweep 33 Move Focus NONE COS, ALIGN/OSM FOCUS=175 0 Secs (0 Secs) To +175 [==>] [1] (0)Comments: Offset to focus position 34 NUV Expos (1) NGC188-41 BUFFER-TIME=12 60 Secs (60 Secs) COS/NUV, TIME-TAG, PSA MIRRORA 50; ure [==>] (COS.im.46 [1] FLASH=YES 7312) *Comments: Exposure during focus sweep* 35 Move Focus NONE COS. ALIGN/OSM FOCUS=200 0 Secs (0 Secs) To +200 [==>] [1] (0)Comments: Offset to focus position

| 36  | NUV Expos (1) NGC188-41                 | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=12   | 60 Secs (60 Secs) |     |
|-----|-----------------------------------------|------------------------|---------|------------------|-------------------|-----|
|     | ure<br>(COS.im.46<br>7312)              |                        |         | 50;<br>FLASH=YES | [==>]             | [1] |
| Con | nments: Exposure during focus swee      | p                      |         |                  |                   |     |
| 37  | Move to No NONE                         | COS, ALIGN/OSM         |         | FOCUS=0          | 0 Secs (0 Secs)   |     |
|     | minal Focus<br>(0)                      |                        |         | [==>]            | [1]               |     |
| Con | nments: Back to Nominal Focus Loc       | ation                  |         |                  |                   |     |
| 38  | Nominal Fo (1) NGC188-41                | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=12   | 60 Secs (60 Secs) |     |
|     | cus Exposur<br>e<br>(COS.im.46<br>7312) |                        |         | 50;<br>FLASH=YES | [==>]             | [2] |
| Con | nments: Exposure at nominal focus p     | position               |         |                  |                   |     |

Orbit 1 Server Version: 20181130 ••• Exp. 2 Exp. 3 €--) Exp. 4 Exp. 5 ۥ•• Exp. 6 Exp. 7 ••• Exp. 8 Exp. 9 ••• Exp. 10 Exp. 11 ۥ• Exp. 12 Exp. 13 ۥ• Exp. 14 Exp. 15 €--> Exp. 16 Exp. 17 €--> Exp. 18 Exp. 19 €--> Exp. 20 Exp. 21 ۥ• Exp. 22 Exp. 23 **Orbit Structure** €--> Exp. 24 Exp. 25 €--> Exp. 26 Exp. 27 €--> Exp. 28 Exp. 29 €--> Exp. 30 Exp. 31 ۥ• Exp. 32 Exp. 33 €--> Exp. 34 Exp. 35 €--> Exp. 36 Unused Orbital Visibility = 86 Exp. 37 GS Acq Occultation Exp. 1 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 sec



|             | Proposal 13192, NUV Focus Sw          | weep: IDK-M002 NUV Contingency (03)                   |                                                       |                            | Sat May 04 03:00:33 GMT 2019                             |  |  |  |  |
|-------------|---------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------|----------------------------------------------------------|--|--|--|--|
|             | Diagnostic Status: Warning            |                                                       |                                                       |                            |                                                          |  |  |  |  |
| Visit       | Scientific Instruments: COS, COS/NUV  |                                                       |                                                       |                            |                                                          |  |  |  |  |
|             | Special Requirements: SCHED 100%      |                                                       |                                                       |                            |                                                          |  |  |  |  |
|             | Comments: This is a contingency       | y visit which is to be used only if the primary targe | t is unavailable. It is a copy of Visit 01 in Program | m 15681.                   |                                                          |  |  |  |  |
|             | Note that APT has a spurious wa       | urning for focus sweeps: "This visit contains an AL   | JGN/OSM exposure which should be preceded by          | an FUV science exposure to | o define the starting position                           |  |  |  |  |
| Diagnostics | (NUV Focus Sweep: IDK-M002<br>scan.   | NUV Contingency (03)) Warning (Form): This v          | isit contains an ALIGN/OSM exposure which sho         | uld be preceded by an FUV  | science exposure to define the starting position for the |  |  |  |  |
|             | # Name                                | Target Coordinates                                    | Targ. Coord. Corrections                              | Fluxes                     | Miscellaneous                                            |  |  |  |  |
| ets         | (2) IDK-M002                          | RA: 02 28 49.2574 (37.2052392d)                       | Proper Motion RA: 11.450 mas/yr                       | V=15.78                    | Reference Frame: ICRS                                    |  |  |  |  |
| arg         |                                       | Dec: -73 43 58.50 (-73.73292d)                        | Proper Motion Dec: -3.476 mas/yr                      |                            |                                                          |  |  |  |  |
| Ĕ           |                                       | Equinox: J2000                                        | Epoch of Position: 2000                               |                            |                                                          |  |  |  |  |
| ed          | Comments:                             |                                                       |                                                       |                            |                                                          |  |  |  |  |
| Ê           | Category=STAR<br>Description=[G V-IV] |                                                       |                                                       |                            |                                                          |  |  |  |  |
|             | Extended=NO                           |                                                       |                                                       |                            |                                                          |  |  |  |  |

#### Label Target Config,Mode,Aperture Spectral Els. **Opt. Params.** Special Reqs. Groups Exp. Time (Total)/[Actual Dur.] Orbit (ETC Run) PSA ACQ/I (2) IDK-M002 GS ACQ SCENARI COS/NUV, ACQ/IMAGE, PSA MIRRORA 60 Secs (60 Secs) O BASE1BE MAGE [==>] (COS.ta.131 [1] 8710) 2 Nominal Fo (2) IDK-M002 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=17 255 Secs (255 Secs) cus Exposur 00;[==>] e FLASH=YES [1] (COS.im.13 18716) Comments: Exposure at nominal focus position COS, ALIGN/OSM 3 Move Focus NONE FOCUS=-200 0 Secs (0 Secs) To -200 [==>] [1] (0)Comments: Offset to focus position NUV Expos (2) IDK-M002 COS/NUV, TIME-TAG, PSA BUFFER-TIME=17 255 Secs (255 Secs) 4 MIRRORA 00;ure [==>] (COS.im.13 [1] FLASH=YES 18716) Comments: Exposure during focus sweep Move Focus NONE COS, ALIGN/OSM FOCUS=-150 0 Secs (0 Secs) 5 To -150 [==>][1] (0)Comments: Offset to focus position NUV Expos (2) IDK-M002 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=17 255 Secs (255 Secs) Exposures ure 00: [==>] (COS.im.13 [1] FLASH=YES 18716) Comments: Exposure during focus sweep Move Focus NONE COS, ALIGN/OSM FOCUS=-100 0 Secs (0 Secs) To -100 [==>] [1] (0)Comments: Offset to focus position NUV Expos (2) IDK-M002 8 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=17 255 Secs (255 Secs) 00; ure [==>] (COS.im.13 [1] FLASH=YES 18716) Comments: Exposure during focus sweep 9 Move Focus NONE COS, ALIGN/OSM FOCUS=-75 0 Secs (0 Secs) To -75 [==>][1] (0)Comments: Offset to focus position 10 NUV Expos (2) IDK-M002 COS/NUV. TIME-TAG. PSA MIRRORA BUFFER-TIME=17 255 Secs (255 Secs) 00: ure [==>] (COS.im.13 [1] FLASH=YES 18716) Comments: Exposure during focus sweep 11 Move Focus NONE COS, ALIGN/OSM FOCUS=-50 0 Secs (0 Secs) To -50 [==>][1] (0)Comments: Offset to focus position

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                     |                        |         |                  |                     |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------|------------------------|---------|------------------|---------------------|-----|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12  | NUV Expos (2) IDK-M002              | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17   | 255 Secs (255 Secs) |     |
| $ \begin{array}{  c   } \hline Commons: Encourse during from sevep \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ure<br>(COS.im.13<br>18716)         |                        |         | 00;<br>FLASH=YES | [==>]               | [1] |
| 13       Move Focus NONE       COS, ALIGNOSM       FOCUS=25       Description         14       NUV Expos (2) DK-M002       COS.NUV, TME-TAG, PSA       MIRRORA       BUFFER-TIME=17 $[[==>]]$ $[I]$ 14       NUV Expos (2) DK-M002       COS.NUV, TME-TAG, PSA       MIRRORA       BUFFER-TIME=17 $[[==>]]$ $[I]$ 15       monetable       COS.ALIGNOSM       FOCUS=0       Description $[[==>]]$ $[I]$ 16       NUV Expos (2) DK-M002       COS.ALIGNOSM       FOCUS=0       Description $[[==>]]$ $[I]$ 16       NUV Expos (2) DK-M002       COS.ALIGNOSM       FOCUS=25       Description $[[==>]]$ $[I]$ 17       More Exposure during focus surep       FLASH=YES       I[==>] $[I]$ $[I]$ 16       NUV Expos (2) DK-M002       COS.ALIGNOSM       FOCUS=25       Description $[I]$ <td>Con</td> <td>ments: Exposure during focus sweet</td> <td>2</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Con | ments: Exposure during focus sweet  | 2                      |         |                  |                     |     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13  | Move Focus NONE                     | COS, ALIGN/OSM         |         | FOCUS=-25        | 0 Secs (0 Secs)     |     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | To -25                              |                        |         |                  | [==>]               | [1] |
| I4       NUV Expos (2) IDK-M002       COS.NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17 $255 \sec(255 \sec)$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ $[==>]$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Con | nments: Offset to focus position    |                        |         |                  |                     |     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14  | NUV Expos (2) IDK-M002              | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17   | 255 Secs (255 Secs) |     |
| $ \begin{array}{  c   } \hline comment: Equating focus sweep \\ \hline 15 Move to No NONE COS, ALIGNOSM \\ \hline 15 Move to No NONE COS, ALIGNOSM \\ \hline 16 MUV Expose (2) IDK-MO02 COS/NUV, TIME-TAG, PSA MIRRORA \\ \hline 16 NUV Expose (2) IDK-M002 COS/NUV, TIME-TAG, PSA MIRRORA \\ \hline 17 Move Focus NONE COS, ALIGNOSM \\ \hline 10 O Comment: Equating focus sweep \\ \hline 17 Move Focus NONE COS, ALIGNOSM \\ \hline 10 O COS III.3 \\ \hline 1871(6) \\ \hline 10 O COS III.3 \\ \hline 1871(6) \\ \hline 10 O COS III.3 \\ \hline 1871(6) \\ \hline 10 O COS III.3 \\ \hline 10 O SC I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | ure<br>(COS.im.13<br>18716)         |                        |         | 00;<br>FLASH=YES | [==>]               | [1] |
| Is       Move to No NONE       COS, ALIGN/OSM       FOCUS=0       0.5ees, 0.9 secs)       1         Initial Freeus<br>(0)       Comments: Costinuity Freeus<br>(COS ini.13)       Entriffee.TIME=17       265 Secs (265 Secs)       1         Is       NUV Expos (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUTFFEE.TIME=17       265 Secs (265 Secs)       1         Is       NUV Expos (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUTFFEE.TIME=17       1       1         17       Move Focus NONE       COS, ALIGN/OSM       FOCUS=25       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>Con</td> <td>nments: Exposure during focus sweep</td> <td>0</td> <td></td> <td></td> <td></td> <td>•</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Con | nments: Exposure during focus sweep | 0                      |         |                  |                     | •   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15  | Move to No NONE                     | COS, ALIGN/OSM         |         | FOCUS=0          | 0 Secs (0 Secs)     |     |
| Comments: Nominal Focus Location       265 Secs (265 Secs)         16       NUV Expos (2) DK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17       265 Secs (265 Secs)       17         16       NUV Expose (2) DK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17       265 Secs (265 Secs)       17         17       Move Focus NONE       COS/ALIGN/OSM       FOCUS=25       0       0       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | (0) minal Focus                     |                        |         |                  | [==>]               | [1] |
| 16       NUV Expos       (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17 $265 Secs$ ( $265 Secs$ ) $1=>/1$ $12 < 12 < 12 < 12 < 12 < 12 < 12 < 12 <$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Con | nments: Nominal Focus Location      |                        |         |                  |                     |     |
| $\begin{array}{c c} u^{ec} & 00; \\ II = J & II \\ Comments: Exposure during focus sweep \\ \hline II Move Focus NONE \\ To + 25 \\ 0 \\ \hline II = J \\ \hline II \\ II \\ II \\ II \\ II \\ II \\ II $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16  | NUV Expos (2) IDK-M002              | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17   | 265 Secs (265 Secs) |     |
| Comments: Exposure during focus sweepCOS, ALIGN/OSMFOCUS=25 $0 Sees (0 Sees)$ 17Move Focus NONE<br>To +25COS, ALIGN/OSMFOCUS=25 $0 Sees (0 Sees)$ $[==>]$ 18NUV Expos (2) IDK-M002<br>(COS/INUV, TIME-TAG, PSA<br>IST16)MIRRORABUFFER-TIME=17<br>00;<br>FLASH=YES265 Sees (265 Sees) $[==>]$ 19MOVE Focus NONE<br>(0)COS/INUV, TIME-TAG, PSA<br>(0)MIRRORABUFFER-TIME=17<br>00;<br>FLASH=YES265 Sees (265 Sees) $[==>]$ 19MOVE Focus NONE<br>(0)COS/INUV, TIME-TAG, PSA<br>(0)FOCUS=50 $0 Sees (0 Sees)$ $[==>]$ 20NUV Expos (2) IDK-M002<br>(COS/INUV, TIME-TAG, PSA<br>(1)MIRRORA<br>(0)BUFFER-TIME=17<br>(0);<br>FLASH=YES265 Sees (265 Sees) $[==>]$ 20NUV Expos (2) IDK-M002<br>(COS/INUV, TIME-TAG, PSA<br>(0);<br>(COS/INUV, TIME-TAG, PSA<br>(0);MIRRORA<br>(0);<br>FLASH=YESBUFFER-TIME=17<br>(2);<br>(2)265 Sees (265 Sees) $[==>]$ 21MOVE Focus NONE<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | ure<br>(COS.im.13<br>18716)         |                        |         | 00;<br>FLASH=YES | [==>]               | [2] |
| 17Move Focus NONE<br>To +25COS, ALIGN/OSMFOCUS=25 $0 \text{ Secs } (0 \text{ Secs })$ $ z=>j$ $ z $ Comments: Offset to focus position18NUV Expos (2) IDK-M002<br>ure during focus sweepCOS/NUV, TIME-TAG, PSAMIRRORABUFFER-TIME=17<br>00;<br>FLASH=YES $265 \text{ Secs } (265 \text{ Secs })$ $ z=>j$ $ z $ 19Move Focus NONE<br>(0)COS/NUV, TIME-TAG, PSAMIRRORABUFFER-TIME=17<br>00;<br>$ z=>j$ $ z $ $ z $ 20NUV Expos (2) IDK-M002<br>(0)COS/NUV, TIME-TAG, PSAMIRRORABUFFER-TIME=17<br>00;<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Con | ments: Exposure during focus sweet  | 2                      |         |                  |                     |     |
| $\begin{bmatrix} T_{0} + 25 \\ (0) \\ \hline Comments: Offset to focus position \\ \hline Is NUV Expos (2) IDK-M002 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=17 OC \\ ure (COS.im.13 IST16) \\ \hline Is MONE TO +50 \\ \hline Io +50 \\ (0) \\ \hline Comments: Exposure during focus sweep \\ \hline Io +50 \\ (0) \\ \hline Comments: Offset to focus position \\ \hline Ie => J \\ \hline Io +50 \\ (0) \\ \hline Ie => J \\ \hline Io +50 \\ (0) \\ \hline Ie => J \\ \hline Io +50 \\ (0) \\ \hline Ie => J \\ \hline Io +50 \\ (0) \\ \hline Ie => J \\ \hline Io +50 \\ (0) \\ \hline Ie => J \\ \hline Io +50 \\ \hline Ie => J \\ \hline Io +50 \\ \hline Ie => J \\ \hline Io +50 \\ \hline Ie => J \\ \hline Io +50 \\ \hline I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17  | Move Focus NONE                     | COS, ALIGN/OSM         |         | FOCUS=25         | 0 Secs (0 Secs)     |     |
| $ \begin{array}{c} \hline Comments: Offset to focus position \\ \hline 18 & NUV Expos (2) DK-M002 & COS/NUV, TIME-TAG, PSA & MIRORA & BUFFER-TIME=17 & 265 Secs (265 Secs) & 1 \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I & I \\ \hline I = > I & I \\ \hline I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | To +25<br>(0)                       |                        |         |                  | [==>]               | [2] |
| 18       NUV Expos (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17 $265 \sec(265 \sec)$ $[=>]$ $[2]$ 00:       FLASH=YES $[=>]$ $[2]$ $[2]$ $[2]$ $[2]$ Comments: Exposure during focus sweep         19       Move Focus NONE       COS, ALIGN/OSM       FOCUS=50 $[=>]$ $[=>]$ $[2]$ Comments: Offset to focus position         20       NUV Expos (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17 $[265 Secs (265 Secs)]$ $[=>]$ $[2]$ OCOS in13         18716)       265 Secs (0 Secs) $[=>]$ $[2]$ Comments: Exposure during focus sweep         21       Move Focus NONE       COS, ALIGN/OSM       FOCUS=75 $[=>]$ $[2]$ Comments: Exposure during focus sweep         22       NUV Expos (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17 $[2]$ $[2]$ (COS in13         18716)       Deces (0 Secs) $[=>]$ $[=>]$ $[2]$ Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Con | nments: Offset to focus position    |                        |         |                  |                     |     |
| $\begin{bmatrix} cost, m.13 \\ 18716 \end{pmatrix} = FLASH=YES \\ \hline FLASH=YES \\ \hline \\ \hline \\ Comments: Exposure during focus sweep \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18  | NUV Expos (2) IDK-M002              | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17   | 265 Secs (265 Secs) |     |
| Comments: Exposure during focus sweep       COS, ALIGN/OSM       FOCUS=50       0 Secs. (0 Secs.)       1         19       Move Focus NONE<br>(0)       COS, ALIGN/OSM       FOCUS=50 $ [==>]       [2]         Comments: Offset to focus position         [==>]       [2]         20       NUV Expos (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=1700;       265 Secs. (265 Secs.)       []         20       NUV Expos (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=1700;       []       []         COmments: Exposure during focus sweep         []       []       []       []         Comments: Exposure during focus sweep         Secs. (0 Secs.)       []       []       []         Comments: Offset to focus position         FOCUS=75       0 Secs. (0 Secs.)       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       []       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | (COS.im.13<br>18716)                |                        |         | FLASH=YES        | [==>]               | [2] |
| 19Move Focus NONE<br>To +50<br>(0)COS, ALIGN/OSMFOCUS=50 $0.8ecs (0.8ecs)$<br>$ => 12Comments: Offset to focus position[=>][2]20NUV Expos (2) IDK-M002ure(COS.im.13)1871(6)COS/NUV, TIME-TAG, PSA(0)MIRORA(0)BUFFER-TIME=17(0)265 Secs (265 Secs)[2]Comments: Exposure during focus sweep[=>][2][2]Comments: COS, ALIGN/OSM(0)FOCUS=750 Secs (0 Secs)[2]Comments: Offset to focus position[=>][2][2]Comments: Offset to focus positionE[=>][2]21NUV Expos (2) IDK-M002(0)COS/NUV, TIME-TAG, PSA(0)MIRORA(0)BUFFER-TIME=17(0);FLASH=YES265 Secs (265 Secs)22NUV Expos (2) IDK-M002(COS.im.13)18716)COS/NUV, TIME-TAG, PSA(COS.im.13)18716)MIRORAFLASH=YESBUFFER-TIME=17(0);FLASH=YES[=>]23Move Focus NONETo +100(0)COS, ALIGN/OSM(COS, ALIGN/OSM(1==>]FOCUS=100[=>][2]24MOVE focus NONETo +100(0)COS, ALIGN/OSM(2) IDK-M002D Secs (0 Secs)(2) IDK-M002[2]24Move Focus NONETo +100(0)COS, ALIGN/OSM(2) IDK-M002D Secs (0 Secs)[2]25Secs (0 Secs)(2) IDK-M002[2][2][2]26Secs (0 Secs)[2][2]27III State focus focus sweep[2][2][2]28Seco (0 Secs)[2][2][2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Con | nments: Exposure during focus sweep | 0                      |         |                  |                     |     |
| $\begin{bmatrix}  z  > 0 \\ 0 \end{bmatrix} \begin{bmatrix}  z  > 0 \\  z  > 0 \end{bmatrix} \begin{bmatrix}  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  >  z  > $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19  | Move Focus NONE                     | COS, ALIGN/OSM         |         | FOCUS=50         | 0 Secs (0 Secs)     |     |
| Comments: Offset to focus position       20       NUV Expos (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17<br>00;<br>FLASH=YES       265 Secs (265 Secs)       1         20       NUV Expos (2) IDK-M002<br>(COS, in.13)<br>18716)       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17<br>00;<br>FLASH=YES       265 Secs (265 Secs)       1         21       Move Focus NONE<br>(0)       COS, ALIGN/OSM       FOCUS=75       0 Secs (0 Secs)       1         22       NUV Expos (2) IDK-M002<br>(COS, in.13)<br>18716)       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17<br>00;<br>FLASH=YES       265 Secs (265 Secs)       1         23       MOVE Exposure during focus sweep       COS, ALIGN/OSM       FOCUS=100       0 Secs (0 Secs)       1         23       Move Focus NONE<br>To +100<br>(0)       COS, ALIGN/OSM       FOCUS=100       0 Secs (0 Secs)       1         20       Off out for out in       COS, ALIGN/OSM       FOCUS=100       0 Secs (0 Secs)       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | (0)                                 |                        |         |                  | [==>]               | [2] |
| 20NUV Expos (2) IDK-M002COS/NUV, TIME-TAG, PSAMIRRORABUFFER-TIME=17<br>00;<br>FLASH=YES265 Secs (265 Secs) $(COS.im.13)$<br>18716) $FLASH=YES$ $[==>]$ $[2,$ Comments: Exposure during focus sweep $COS, ALIGN/OSM$ FOCUS=75 $0$ Secs (0 Secs) $[==>]$ 20NUV Expos (2) IDK-M002<br>(0)COS/NUV, TIME-TAG, PSAMIRRORABUFFER-TIME=17<br>00;<br>FLASH=YES $0$ Secs (0 Secs) $[==>]$ 20NUV Expos (2) IDK-M002<br>(COS.im.13)<br>18716)COS/NUV, TIME-TAG, PSAMIRRORABUFFER-TIME=17<br>00;<br>FLASH=YES $265$ Secs (265 Secs) $[==>]$ 20MOVE Expos (2) IDK-M002<br>(COS.im.13)<br>18716)COS/NUV, TIME-TAG, PSAMIRRORABUFFER-TIME=17<br>00;<br>FLASH=YES $[==>]$ $[==>]$ 23Move Focus NONE<br>To +100<br>(0)COS, ALIGN/OSMFOCUS=100 $0$ Secs (0 Secs) $[==>]$ 20Move focus NONE<br>To +100<br>(0)COS, ALIGN/OSMFOCUS=100 $0$ Secs (0 Secs) $[==>]$ 25Comments: for the focus notion $[==>]$ $[2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Con | nments: Offset to focus position    |                        |         |                  |                     |     |
| $\begin{bmatrix} 1 & 00, \\ FLASH=YES \\ \hline \\ \hline \\ COstim.13 \\ 18716 \\ \hline \\ Comments: Exposure during focus sweep \\ \hline \\ \hline \\ \hline \\ To +75 \\ (0) \\ \hline \\ \hline \\ Comments: Offset to focus position \\ \hline \\ \hline \\ \hline \\ Comments: Offset to focus position \\ \hline \\ \hline \\ \hline \\ \hline \\ Comments: Offset to focus position \\ \hline \\ \hline \\ \hline \\ \hline \\ Comments: Offset to focus position \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20  | NUV Expos (2) IDK-M002              | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17   | 265 Secs (265 Secs) |     |
| Comments: Exposure during focus sweep         21       Move Focus NONE<br>To +75<br>(0)       COS, ALIGN/OSM       FOCUS=75       0 Secs (0 Secs)       1         20       NUV Expos (2) IDK-M002<br>ure<br>(COS, im.13<br>18716)       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17<br>00;<br>FLASH=YES       265 Secs (265 Secs)       1         23       Move Focus NONE<br>To +100<br>(0)       COS, ALIGN/OSM       FOCUS=100       0 Secs (0 Secs)       1         23       Move Focus NONE<br>To +100<br>(0)       COS, ALIGN/OSM       FOCUS=100       0 Secs (0 Secs)       1         20       COMMENTATION INTERCOMPTION INTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | (COS.im.13<br>18716)                |                        |         | FLASH=YES        | [==>]               | [2] |
| $\begin{array}{c c} 21 & \text{Move Focus NONE} \\ \hline \text{To +75} \\ (0) \end{array} & \begin{array}{c} \text{COS, ALIGN/OSM} \end{array} & \begin{array}{c} \text{FOCUS=75} \\ \hline \text{DOCUS=75} \end{array} & \begin{array}{c} 0 & \text{Secs (0 Secs)} \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Con | nments: Exposure during focus sweep | 0                      |         |                  |                     |     |
| $\begin{bmatrix} 10 + 75 \\ (0) \end{bmatrix}$ $\begin{bmatrix} l = > J \end{bmatrix}$ $\begin{bmatrix} l = S \end{bmatrix}$ $\begin{bmatrix} l = $ | 21  | Move Focus NONE                     | COS, ALIGN/OSM         |         | FOCUS=75         | 0 Secs (0 Secs)     |     |
| Comments: Offset to focus position         22       NUV Expos (2) IDK-M002       COS/NUV, TIME-TAG, PSA       MIRRORA       BUFFER-TIME=17<br>00;<br>FLASH=YES $265 \text{ Secs } (265 \text{ Secs })$ $[==>J]$ $[2]$ 23       Move Focus       NONE<br>To +100<br>(0)       COS, ALIGN/OSM       FOCUS=100 $0 \text{ Secs } (0 \text{ Secs })$ $[==>J]$ $[2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | (0)                                 |                        |         |                  | [==>]               | [2] |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Con | nments: Offset to focus position    |                        |         |                  |                     |     |
| $\begin{bmatrix} ure & 00; \\ (COS.im.13 \\ 18716 \end{pmatrix} & FLASH=YES \\ \hline \\ \hline \\ Comments: Exposure during focus sweep \\ \hline \\ \hline \\ 23 & Move Focus & NONE & COS, ALIGN/OSM & FOCUS=100 & \hline \\ \hline \\ To +100 & 0 & \hline \\ \hline \\ (0) & I & I & I & I \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22  | NUV Expos (2) IDK-M002              | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17   | 265 Secs (265 Secs) |     |
| Comments: Exposure during focus sweep         23       Move Focus       NONE       COS, ALIGN/OSM       FOCUS=100       0 Secs (0 Secs) $[==>]$ [2]         (0)       (0)       (0)       [2]       [2]       [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | ure<br>(COS.im.13<br>18716)         |                        |         | 00;<br>FLASH=YES | [==>]               | [2] |
| $\begin{array}{c c} 23 & \text{Move Focus NONE} \\ To +100 \\ (0) \\ \end{array} & \begin{array}{c} 0 & \text{Secs (0 Secs)} \\ \hline [==>] & \hline [2] \\ \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Con | nments: Exposure during focus sweep | D                      |         |                  |                     |     |
| $\begin{bmatrix} 10 + 100 \\ 0 \end{bmatrix}$ $\begin{bmatrix} l = > l \end{bmatrix}$ $\begin{bmatrix} l = > l \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23  | Move Focus NONE                     | COS, ALIGN/OSM         |         | FOCUS=100        | 0 Secs (0 Secs)     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 10 + 100 (0)                        |                        |         |                  | [==>]               | [2] |
| Comments: Offset to focus position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Con | nments: Offset to focus position    |                        |         |                  |                     |     |

| 0.4 |                                   |                        | MIDDODA |                       |                     |     |
|-----|-----------------------------------|------------------------|---------|-----------------------|---------------------|-----|
| 24  | NUV Expos (2) IDK-M002<br>ure     | COS/NUV, HME-TAG, PSA  | MIRRORA | BOFFER-IIME=1/<br>00: | 265 Secs (265 Secs) | -   |
|     | (COS.im.13<br>18716)              |                        |         | FLASH=YES             | [==>]               | [2] |
| Con | ments: Exposure during focus swee | ер                     |         |                       |                     |     |
| 25  | Move Focus NONE                   | COS, ALIGN/OSM         |         | FOCUS=125             | 0 Secs (0 Secs)     |     |
|     | To +125<br>(0)                    |                        |         |                       | [==>]               | [2] |
| Con | ments: Offset to focus position   |                        |         |                       |                     |     |
| 26  | NUV Expos (2) IDK-M002            | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17        | 265 Secs (265 Secs) |     |
| 1   | ure<br>(COS im 13                 |                        |         | 00;                   | [==>]               | [2] |
| 1   | 18716)                            |                        |         | FLASH=YES             |                     | [2] |
| Con | ments: Exposure during focus swee | ер                     |         |                       |                     |     |
| 27  | Move Focus NONE                   | COS, ALIGN/OSM         |         | FOCUS=150             | 0 Secs (0 Secs)     |     |
|     | 10 + 150<br>(0)                   |                        |         |                       | [==>]               | [2] |
| Con | ments: Offset to focus position   |                        |         |                       |                     |     |
| 28  | NUV Expos (2) IDK-M002            | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17        | 265 Secs (265 Secs) |     |
|     | ure<br>(COS im 13                 |                        |         | 00;                   | [==>]               | [2] |
|     | 18716)                            |                        |         | FLASH=YES             |                     | [2] |
| Con | ments: Exposure during focus swee | ер                     |         |                       |                     |     |
| 29  | Move Focus NONE                   | COS, ALIGN/OSM         |         | FOCUS=175             | 0 Secs (0 Secs)     |     |
|     | 10 + 1/5 (0)                      |                        |         |                       | [==>]               | [2] |
| Con | ments: Offset to focus position   |                        |         |                       |                     |     |
| 30  | NUV Expos (2) IDK-M002            | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17        | 265 Secs (265 Secs) |     |
|     | ure<br>(COS im 13                 |                        |         | 00;                   | [==>]               | (2) |
|     | 18716)                            |                        |         | FLASH=YES             |                     | [3] |
| Con | ments: Exposure during focus swee | ер                     |         |                       | T                   |     |
| 31  | Move Focus NONE                   | COS, ALIGN/OSM         |         | FOCUS=200             | 0 Secs (0 Secs)     |     |
|     | (0)                               |                        |         |                       | [==>]               | [3] |
| Con | ments: Offset to focus position   |                        |         |                       |                     |     |
| 32  | NUV Expos (2) IDK-M002            | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17        | 265 Secs (265 Secs) |     |
|     | ure<br>(COS.im.13                 |                        |         | 00;                   | [==>]               | [3] |
|     | 18716)                            |                        |         | FLASH=YES             |                     | [5] |
| Con | ments: Exposure during focus swee | ep                     |         |                       |                     |     |
| 33  | Move Focus NONE                   | COS, ALIGN/OSM         |         | FOCUS=250             | 0 Secs (0 Secs)     |     |
|     | (0)                               |                        |         |                       | [==>]               | [3] |
| Con | ments: Offset to focus position   |                        |         |                       |                     |     |
| 34  | NUV Expos (2) IDK-M002            | COS/NUV, TIME-TAG, PSA | MIRRORA | BUFFER-TIME=17        | 265 Secs (265 Secs) | _   |
|     | ure<br>(COS.im.13                 |                        |         | 00;                   | [==>]               | [3] |
|     | 18716)                            |                        |         | FLASH=TES             |                     | [5] |
| Con | ments: Exposure during focus swee | ер                     |         |                       |                     |     |
| 35  | Move Focus NONE                   | COS, ALIGN/OSM         |         | FOCUS=300             | 0 Secs (0 Secs)     |     |
| ł   | (0)                               |                        |         |                       | [==>]               | [3] |
| Con | ments: Offset to focus position   |                        |         |                       |                     |     |
| 1   |                                   |                        |         |                       |                     |     |

| 000 | <u>sai 13192 - NOV 1</u>        |                           |         | <u>ency (05) - 005 Side z Initial</u> |                     |     |
|-----|---------------------------------|---------------------------|---------|---------------------------------------|---------------------|-----|
| 36  | NUV Expos (2) IDK-M00           | 2 COS/NUV, TIME-TAG, PSA  | MIRRORA | BUFFER-TIME=17                        | 265 Secs (265 Secs) |     |
|     | ure                             |                           |         | 00;                                   | [==>]               |     |
|     | (COS.im.13<br>18716)            |                           |         | FLASH=YES                             |                     | [3] |
| Cor | nments: Exposure during focu    | is sweep                  |         |                                       |                     |     |
| 37  | Move Focus NONE                 | COS, ALIGN/OSM            |         | FOCUS=350                             | 0 Secs (0 Secs)     |     |
|     | To +350<br>(0)                  |                           |         |                                       | [==>]               | [3] |
| Cor | nments: Offset to focus positio | on                        |         |                                       |                     |     |
| 38  | NUV Expos (2) IDK-M00           | 2 COS/NUV, TIME-TAG, PSA  | MIRRORA | BUFFER-TIME=17                        | 265 Secs (265 Secs) |     |
|     | ure<br>(COS im 13               |                           |         | 00;                                   | [==>]               | (2) |
|     | 18716)                          |                           |         | FLASH=YES                             |                     | [3] |
| Cor | nments: Exposure during focu    | is sweep                  |         |                                       |                     |     |
| 39  | Move Focus NONE                 | COS, ALIGN/OSM            |         | FOCUS=400                             | 0 Secs (0 Secs)     |     |
|     | To +400<br>(0)                  |                           |         |                                       | [==>]               | [3] |
| Con | nments: Offset to focus positio | on                        |         |                                       |                     |     |
| 40  | NUV Expos (2) IDK-M00           | 2 COS/NUV, TIME-TAG, PSA  | MIRRORA | BUFFER-TIME=17<br>00;                 | 265 Secs (265 Secs) |     |
|     | ure<br>(COS im 12               |                           |         |                                       | [==>]               | 607 |
|     | 18716)                          |                           |         | FLASH=YES                             |                     | [3] |
| Con | nments: Exposure during focu    | is sweep                  |         |                                       |                     |     |
| 41  | Move to No NONE                 | COS, ALIGN/OSM            |         | FOCUS=0                               | 0 Secs (0 Secs)     |     |
|     | minal Focus (0)                 |                           |         |                                       | [==>]               | [3] |
| Cor | nments: Back to Nominal Foc     | us Location               |         |                                       |                     |     |
| 42  | Nominal Fo (2) IDK-M00          | 2 COS/NUV, TIME-TAG, PSA  | MIRRORA | BUFFER-TIME=17                        | 265 Secs (265 Secs) |     |
|     | cus Exposur                     |                           |         | 00;<br>FLASH=YES                      | [==>1               |     |
|     | e<br>(COS.im.13<br>18716)       | e<br>(COS.im.13<br>18716) |         |                                       |                     | [3] |
| Cor | nments: Exposure at nominal     | focus position            |         |                                       |                     |     |
|     |                                 |                           |         |                                       |                     |     |





![](_page_21_Figure_1.jpeg)