## 13636 - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}

Cycle: 21, Proposal Category: CAL/COS
(Availability Mode: RESTRICTED)

## INVESTIGATORS

| Name | Institution | E-Mail |
| :--- | :--- | :--- |
| Dr. Steven V. Penton (PI) (Contact) | Space Telescope Science Institute | penton@stsci.edu |
| Dr. Charles R. Proffitt (CoI) | Computer Sciences Corporation | proffitt@stsci.edu |
| Sean Lockwood (CoI) | Space Telescope Science Institute | lockwood@stsci.edu |


| VISITS |
| :--- |
| Visit Targets used in Visit Configurations used in Visit Orbits Used Last Orbit Planner Run OP Current <br> with Visit? <br> 01 (1) AZV18 <br> (11) AZV18-OFFSET-NE-1.4AS COS/FUV <br> COS/NUV COS/FUV <br> COS/NUV <br> S/C (1) AZV18 <br> (21) AZV18-OFFSET-AD-0.3 <br> (22) AZV18-OFFSET-AD+0.5 <br> DARK 21:01:41.0 <br> (1) AZV18 <br> (3) AZV18-OFFSET-XD+0.5 <br> (4) AZV18-OFFSET-XD+1.0 <br> (5) AZV18-OFFSET-XD+1.5 COS/FUV <br> COS/NUV 2 $10-$ Sep-2014 21:01:48.0   |

Proposal 13636 (STScl Edit Number: 4, Created: Wednesday, September 10, 2014 8:02:19 PM EST) - Overview

| Visit | Targets used in Visit | Configurations used in Visit | Orbits Used | Last Orbit Planner Run | OP Current <br> with Visit? |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 04 | (1) AZV18 <br> (3) AZV18-OFFSET-XD+0.5 <br> (4) AZV18-OFFSET-XD+1.0 <br> (5) AZV18-OFFSET-XD+1.5 | COS/FUV <br> COS/NUV | 2 | $10-$ Sep-2014 21:02:02.0 |  |
| (1) AZV18 <br> (3) AZV18-OFFSET-XD+0.5 <br> (4) AZV18-OFFSET-XD+1.0 <br> (5) AZV18-OFFSET-XD+1.5 | COS/FUV <br> COS/NUV | 2 | $10-S e p-201421: 02: 08.0$ |  |  |
| 06 | (6) WD1657+343 <br> (61) WD1657+343-OFFSET-SE- <br> 1.4 AS <br> (62) WD1657+343-OFFSET-XD-1.0 | COS/FUV <br> COS/NUV | 2 | $10-S e p-201421: 02: 16.0$ | yes |

11 Total Orbits Used

## ABSTRACT

Verify the ability of the Cycle 22 COS FSW to place an isolated point source at the center of the PSA, using FUV dispersed light target acquisition (TA) from the object and all three FUV gratings at the Third Lifetime Position (LP3). This program is modeled from the activity summary of LENA3.

This program should be executed after the LP3 HV, XD spectral positions, aperture mechanism position, and focus are determined and updated. In addition, initial estimates of the LIFETIME=ALTERNATE TA FSW parameters and subarrays should be updated prior to execution of this program. After Visit 01, the subarrays will be updated. After Visit 2, the FUV WCA-to-PSA offsets will be updated. Prior to Visit 6, LV56 will be installed will include new values for the LP3 FUV plate scales. VISIT 6 exposures use the default lifetime position (LP3).

NUV imaging TAs have previously been used to determine the correct locations for FUV spectra. We follow the same procedure here.

Note that the ETC runs here were made using ETC22.2 and are therefore valid for Mach 2014. Some TDS drop will likely have occured before these visits execute, but we have plenty of count to do what we need to do in this program.

## OBSERVING DESCRIPTION

Successful FUV dispersed light centering (target acquisition, TA) of a point source within the PSA at the third lifetime position (LP3) is verified. This activity defines the FUV TA parameters in the Cycle 22 flight software (FSW) (LV56) and verifies that the FUV centering error is within the required thresholds. viz. 0.1 arcsec.

Visits 1-5 will be run at LIFETIME=ALTERNATE. Prior to execution, all the appropriate HV, SIAF, APERTURE, FOCUS, SUBARRAYS, and TA parameter updates must be available. The Subarrays, HV and SIAF are all part of the ground system, while the FOCUS values, APERTURE positions and the TA parameters are patchable constants in the FSW. Once we are ready to move to LP3 we will need to swap BEST (Currently LP2) and ALTERNATE (Currently LP3) such that BEST=LP3 and ALTERNATE=LP2, both in the FSW and in the SIAF file. Visit 6 wll execute at BEST after LV56 has been installed.

Visit 1 tests ACQ/SEARCH and also verifies that the updated FUV TA sub-arrays are correct for the LP3. After an NUV imaging TA and the standard NUV to FUV offset to the LP3, a $3 \times 3 \times 1.0$ " ACQ/SEARCH pattern is simulated by moving the target relative to the aperture via POSTARGS. At each position, a quick spectrum is taken at each location (with TAGFLASH). $1^{\prime \prime}$ was selected instead of the default 1.767 " so that we ensure that no target light is missing the TA sub-arrays at locations relative to the PSA where target light still enters the PSA. An actual $3 \times 3 \times 1.0$ " ACQ/SEARCH is performed on the same centered target. Finally, a $3 \times 3 \times 1.767^{\prime \prime}$ ACQ/SEARCH is performed on a target offset by $1.414^{\prime \prime}$ in the aperture. Using the Roll angle on the data of the expected observation, the target will be offset by $1 "$ in AD (Along Dispersion) and 1 " in XD (crossdispersion).

Visit 2 tests ACQ/PEAKD. From a centered position, simulate a wide ACQ/PEAKD pattern (i.e., $9 \times 0.4$ "). Take spectra at all positions (via POSTARGs) using G130M/1309. Track Ly-alpha to make sure the Geocoronal light remains outside the TA extraction boxes (subarrays) at all offsets. Repeat an actual 9x0.4" ACQ/PEAKD for a centered target, then center on off-centered target in both directions. [9x0.3" (offset $+0.3^{\prime \prime} \mathrm{Y}$ ) and $7 x 0.55^{\prime \prime}$ (offset $-0.8^{\prime \prime} \mathrm{Y}$ )]. Before moving the target away from the centered position, take G140L, G130M, and G160M spectra at centered and extreme CENWAVE positions. Use moderate FLASH exposures to track the slope of the WCA light on the detector to determine if CENWAVE specific WCA-to-PSA offsets are required.

Visits 1 and 2 use the same roll angle of 345 degrees +/- 1 degree.

Proposal 13636 (STScl Edit Number: 4, Created: Wednesday, September 10, 2014 8:02:19 PM EST) - Overview
Visits 3-5 test ACQ/PEAKXD and define the plate scales for each grating (Visit 3=G130M, Visit 4=G160M, Visit $5=$ G140L). Take spectra as the target is stepped (via POS-TARGs) in the XD direction to determine the plate scales. WCA lamp will also be flashed to verify the plate scale at the WCA position and the PSA locations. Spectra will be taken at 9 XD locations $+/-(0,0.3,0.6,1.1,1.6)$ ". This will need to be done for each grating. We will need to test these plate scales (and possibly updated WCA to PSA offsets) in a followup visit. Also, test ACQ/PEAKXD at current and offset positions using the initial offsets and plate scales previously determined. The test sequence is centered, $+/-1.0,+/-0.5$, and $+/-1.5$ to determine the effects of gain sag on the centering accuracy (3 visits x 2 orbits each.) Also, take a centered G140L BOA spectrum in Visit 5. At the end of Visit 5, we test out the new PEAKXD with NUM_POS > 1 TA for each FUV grating.

Visits 3-5 all use a roll angle of 30 degrees +/- 1 degree.

Visit 6 is the confirmation visit. Will test ACQ/SEARCH+PEAKXD+PEAKD on a target offset $-1 "$ in $A D$, and +1 " off in XD. G160M will use a $3 \times 3 \times 1.767^{\prime \prime}$ ACQ/SEARCH + PEAKXD $+7 \times 0.45 "$ PEAKD. G130M will use a PEAKXD+5x0.8" PEAKD. Also, test each grating for $+/-1.0 "$ ACQ/PEAKXDs to verify plate scales and WCA-to-PSA offsets. We would like to run this Visit on as close to Cycle 22 conditions as possible. (LIFETIME=ALTERNATE, using FSW HV and focus values). There are also two PEAKXDs with NUM_POS > 1 in this visit.

Visit 6 will use a roll angle of $298+/-1$ degree. Visit 6 will be executed with the default lifetime position (which will be LP3 when it is executed.)

The HVs to be used during these visits are :

CENWAVE Lifetime Position HVA,HVB

| ------- | Alternate (LP3) | 167,163 |
| :--- | :--- | :--- | :--- |
| G130M (not 1222) | Alternate (LP3) | 167,163 |
| G160M | Alternate (LP3) | 171,167 |
| G130M/1222 |  |  |
| G140L $\quad$ Alternate (LP3) | 167,163 |  |

The Aperture Mech table should look like :
pcmech_ApMXDispPosition=

Proposal 13636 (STScl Edit Number: 4, Created: Wednesday, September 10, 2014 8:02:19 PM EST) - Overview \{
/* FUV NUV */
/*
--- --- */
\{ 53, 126 \},/* PSA_B, best PSA position */
$\{-226,-153\}, / *$ BOA_B, best BOA position */
\{-226, -153$\}$, /* FCA_B, best FCA position */
\{ 53, 126 \},/* WCA_B, best WCA position */
\{ 181, 126 \}, /* PSA_A, alternate PSA position */
$\{-98,-153\}, / *$ BOA_A, alternate BOA position */
\{-98, -153 \},/* FCA_A, alternate FCA position */
\{ 181, 126 \},/* WCA_A, alternate WCA position */
\{ 126, 126 \},/* PSA_O, original PSA position */
$\{-153,-153\}, / *$ BOA_O, original BOA position */
\{-153, -153 \},/* FCA_O, original FCA position */
\{ 126, 126 \} /* WCA_O, original WCA position */
\};

The ALTERNATE SIAF entries should look like :

LFBOAA 2014.188:00:00:00 230.9384-239.2996 0.022600 0.094300 135.045 .0
LFPSAA 2014.188:00:00:00 230.9384-239.2996 0.0226000 .094300135 .045 .0
LAPTFBOAFA 2014.188:00:00:00 221.5642-248.6738 0.022600 0.094300135 .045 .0
LAPTFPSAFA 2014.188:00:00:00 240.3126 -229.9254 0.022600 0.094300135 .045 .0
--------- Additional Comments $\qquad$

As of $7 / 3 / 2014$, the planned schedule for 13636 is :

Proposal 13636 (STScl Edit Number: 4, Created: Wednesday, September 10, 2014 8:02:19 PM EST) - Overview
SMS of Sept 8 visit 1 of 136361 orbit (external)
SMS of Sept 29 visit 2 of 136362 orbits (external)
SMS of Oct 27 visits $3-5$ of 136366 orbits (external)
SMS of Feb 9 visit 6 of 136362 orbits (external)

From APT (V22.2), the roll angles availble during these dates for the Visit 1-5 target, AzV18, are:

01 Sep 2014302.06-350.46
02 Sep 2014303.08-351.48
03 Sep 2014304.10-352.50
04 Sep 2014305.22-353.42
05 Sep 2014306.23-354.43
06 Sep 2014307.24-355.44
07 Sep 2014308.25-356.45
08 Sep 2014309.45-357.25 <- Visit 1, ROLL Angle set to 345d
09 Sep 2014310.45-358.25
10 Sep 2014311.45-359.25
11 Sep 2014312.45-000.25
12 Sep 2014313.54-001.14
13 Sep 2014314.53-002.13
14 Sep 2014315.51-003.11
15 Sep 2014316.70-003.90
16 Sep 2014317.68-004.88
17 Sep 2014318.66-005.86
18 Sep 2014319.63-006.83
19 Sep 2014320.70-007.70
20 Sep 2014321.67-008.67
21 Sep 2014322.64-009.64
22 Sep 2014323.70-010.50

Proposal 13636 (STScl Edit Number: 4, Created: Wednesday, September 10, 2014 8:02:19 PM EST) - Overview
23 Sep 2014324.66-011.46
24 Sep 2014325.62-012.42
25 Sep 2014326.67-013.27
26 Sep 2014327.63-014.23
27 Sep 2014328.58-015.18
28 Sep 2014329.72-015.92
29 Sep 2014330.67-016.87 <- Visit 2, ROLL Angle also set to 345d
30 Sep 2014331.71-017.71
01 Oct 2014332.65-018.65
02 Oct 2014333.59-019.59
03 Oct 2014334.52-020.52
04 Oct 2014335.45-021.45
05 Oct 2014336.38-022.38
06 Oct 2014337.41-023.21
07 Oct 2014338.34-024.14
08 Oct 2014339.36-024.96
09 Oct 2014340.29-025.89
10 Oct 2014341.21-026.81
11 Oct 2014342.23-027.63
12 Oct 2014343.14-028.54
13 Oct 2014344.07-029.45
14 Oct 2014344.98-030.36
15 Oct 2014345.90-031.28
16 Oct 2014346.90-032.10
17 Oct 2014347.81-033.01
18 Oct 2014348.72-033.92
19 Oct 2014349.62-034.82
20 Oct 2014350.53-035.73
21 Oct 2014351.54-036.54

Proposal 13636 (STScl Edit Number: 4, Created: Wednesday, September 10, 2014 8:02:19 PM EST) - Overview
22 Oct 2014352.44-037.44
23 Oct 2014353.35-038.35
24 Oct 2014354.25-039.25
25 Oct 2014355.15-040.15
26 Oct 2014356.06-041.06
27 Oct 2014356.96-041.96 <- Visits 3,4 \& 5, ROLL Angle set to 30d
28 Oct 2014357.86-042.86
29 Oct 2014358.76-043.76
30 Oct 2014359.67-044.67
31 Oct 2014000.57-045.57
01 Nov 2014001.57-046.37
02 Nov 2014002.47-047.27
03 Nov 2014003.38-048.18
04 Nov 2014021.68-031.68
05 Nov 2014022.58-032.58
06 Nov 2014023.49-033.49
07 Nov 2014024.39-034.39
08 Nov 2014025.30-035.30
09 Nov 2014026.21-036.21
10 Nov 2014027.12-037.12
11 Nov 2014028.02-038.02
12 Nov 2014028.93-038.93
13 Nov 2014029.85-039.85
14 Nov 2014030.76-040.76

From APT (V22.2), the roll angles availble for the Visit 6 target, WD1657, are:

31 Jan 2015297.60-307.60
01 Feb 2015296.71-306.71

Proposal 13636 (STScl Edit Number: 4, Created: Wednesday, September 10, 2014 8:02:19 PM EST) - Overview
02 Feb 2015295.82-305.82 <-Visit 6 target date. Roll angle set to 298, so that it will still work unti $2 / 10 / 15$
03 Feb 2015294.93-304.93
04 Feb 2015294.05-304.05
05 Feb 2015293.17-303.17
06 Feb 2015292.29-302.29
07 Feb 2015291.42-301.42
08 Feb 2015290.55-300.55
09 Feb 2015289.68-299.68
10 Feb 2015288.82-298.82 <- Visit 6 target date. Roll angle set to 298 , so that it will still work unti $2 / 10 / 15$
11 Feb 2015287.96-297.96
12 Feb 2015287.10-297.10
13 Feb 2015286.24-296.24
14 Feb 2015285.39-295.39
15 Feb 2015284.54-294.54
16 Feb 2015283.69-293.69
17 Feb 2015282.84-292.84
18 Feb 2015281.99-291.99
19 Feb 2015281.15-291.15
20 Feb 2015280.30-290.30
21 Feb 2015279.46-289.46
22 Feb 2015278.62-288.62
23 Feb 2015277.78-287.78
24 Feb 2015276.94-286.94
25 Feb 2015276.10-286.10
26 Feb 2015257.86-302.66
27 Feb 2015256.92-301.92
28 Feb 2015256.09-301.09

Visit 6 is sometime in Feb 2015 (TBD), we will adjust the ROLL angle when we know the exact date of execution. Visit 6 will be the first COS visit

Proposal 13636 (STScl Edit Number: 4, Created: Wednesday, September 10, 2014 8:02:19 PM EST) - Overview at LP3

## Proposal 13636 - ACQ/SEARCH TEST (01) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}

## Proposal 13636, ACQ/SEARCH TEST (01), completed <br> Thu Sep 11 01:02:19 GMT 2014

## Diagnostic Status: Warning

Scientific Instruments: COS/NUV, COS/FUV
Special Requirements: SCHED 100\%; ORIENT 344D TO 346 D; BETWEEN 08-SEP-2014:00:00:00 AND 11-SEP-2014:00:00:00
Comments: ACQ/SEARCH Test. The target is AVZ18 (the SMOV TA target)

Visit
For a $3 x 3 x 1$ " spiral pattern, the telescope slew is [AD,XD]

| 0.00 | 0.00 |
| ---: | ---: |
| 1.00 | 0.00 |
| 1.00 | 1.00 |
| 0.00 | 1.00 |
| -1.00 | 1.00 |
| -1.00 | 0.00 |
| -1.00 | -1.00 |
| 0.00 | -1.00 |
| 1.00 | -1.00 |

The roll angle is constrained to 345 degrees $+/-1$ degree, schedulability $=100 \%$.
 AD and perform a $3 \times 3 \times 1.767^{\prime \prime}$ ACQ/SEARCH on the target.
(ACQ/SEARCH TEST (01)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/SEARCH TEST (01)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/SEARCH TEST (01)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/SEARCH TEST (01)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting
(ACQ/SEARCH TEST (01)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE


To move the target to this location, the offset should have the opposite sign in the offsets above.

Proposal 13636 - ACQ/SEARCH TEST (01) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}


Proposal 13636 - ACQ/SEARCH TEST (01) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}


Proposal 13636 - ACQ/SEARCH TEST (01) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}


## Proposal 13636 - ACQ/PEAKD TEST (02) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}

## Proposal 13636, ACQ/PEAKD TEST (02), implementation <br> Thu Sep 11 01:02:21 GMT 2014 <br> Diagnostic Status: Warning

Scientific Instruments: COS/NUV, S/C, COS/FUV
Special Requirements: SCHED 100\%; ORIENT 344D TO 346 D; AFTER 01 BY 13 D TO 28 D

 to $+1.6^{\prime \prime} \mathrm{X}$. We flash the lamp at all positions.

We then perform an actual $9 x 0.4^{\prime \prime}$ ACQ/PEAKD on the centered target, then attempt a $9 x 0.3^{\prime \prime}$ ACQ/PEAKD on a target offset by $+0.3^{\prime \prime}$, then a $7 x 0.5^{\prime \prime}$ offset by $-0.8^{\prime \prime}$
The roll angle is constrained to 345 degrees, schedulability $=100 \%$
We balance the POSTARG'd spectra by the expected throughput (which is a function of radius)
OFFSET \%LOSS ET equivalent/secondET
$0.00-0.00 \quad 1.0020 \mathrm{~s}$
$0.40-0.00$ 1.0020s
$0.80 \quad 20.00 \quad 1.2525$
$\begin{array}{lll}1.20 & 46.67 & 2.137 .5\end{array}$
$1.60 \quad 73.33 \quad 3.7575 .0 \mathrm{~s}$
$\boldsymbol{\mathcal { O }}$ (ACQ/PEAKD TEST (02)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/PEAKD TEST (02)) Warning (Form): COS ACQ/PEAKD exposure should be preceded by an ACQ/PEAKXD exposure in the Visit.
(ACQ/PEAKD TEST (02)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting. (ACQ/PEAKD TEST (02)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE

Proposal 13636-ACQ/PEAKD TEST (02) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}


To move the target to this location, the offset should have the opposite sign in the offsets above.

Proposal 13636 - ACQ/PEAKD TEST (02) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}


Proposal 13636 - ACQ/PEAKD TEST (02) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}

|  | $\begin{aligned} & \hline \text { G160M/162 (1) AZV18 } \\ & \text { 3- BASELI } \\ & \text { NE SPECT } \\ & \text { RUM } \\ & \text { (COS.sp. } 617 \\ & \text { 119) } \end{aligned}$ | COS/FUV, TIME-TAG, PSA | $\begin{gathered} \hline \text { G160M } \\ 1623 \mathrm{~A} \end{gathered}$ | BUFFER-TIME=54 <br> 5; <br> FP-POS=3; <br> FLASH=S0200D03 <br> 6; <br> WAVECAL=YES; <br> LIFETIME-POS=A <br> LTERNATE |  | 36 Secs (36 Secs) | [1] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Comments: Spectrum of source to define WCA location for G160M/1623, $E T=L A M P$ TIME $=36$ s. COS.sp. 617119 gives S/N/RE=10@ 1640A in 222s. ( $B T=2 / 3 * 818=545$ ). |  |  |  |  |  |  |  |
|  | $\begin{aligned} & \text { G130M/132 } \\ & \text { 7- BASELI AZV18 } \\ & \text { NE SPECT } \\ & \text { RUM } \\ & \text { (COS.sp. } 617 \\ & \text { 121) } \end{aligned}$ | COS/FUV, TIME-TAG, PSA | $\begin{aligned} & \text { G130M } \\ & 1327 \mathrm{~A} \end{aligned}$ | BUFFER-TIME=43 <br> 0 ; <br> FP-POS=3; <br> FLASH=S0060D03 <br> 6; <br> WAVECAL=YES; <br> LIFETIME-POS=A <br> LTERNATE |  | 36 Secs (36 Secs) | [1] |
| Comments: Spectrum of source to define correct location of star when it is centered in NUV ( COS.sp. 617121 ). $B T=645 *(2 / 3)=\sim 430$. This will get us S/N~10 per RE in 122s. 36 s lamp flash. |  |  |  |  |  |  |  |
|  | $\begin{array}{ll} \hline \text { G130M/129 } & \text { (1) AZV18 } \\ \text { 1- BASELI } \\ \text { NE SPECT } \\ \text { RUM } \\ \text { (COS.sp. } 617 \\ \text { 124) } \end{array}$ | COS/FUV, TIME-TAG, PSA | $\begin{aligned} & \text { G130M } \\ & 1291 \mathrm{~A} \end{aligned}$ | BUFFER-TIME $=47$ <br> 4; <br> FP-POS=3; <br> FLASH=S0060D03 <br> 6; <br> WAVECAL=YES; <br> LIFETIME-POS=A <br> LTERNATE |  | 36 Secs (36 Secs) | [1] |
| Comments: Spectrum of source to define correct location of star when it is centered in NUV (COS.sp.617124). $B T=711 *(2 / 3)=\sim 474$. This will get us S/N $\sim 10$ per RE in 122 s . 36 s lamp flash |  |  |  |  |  |  |  |
|  |  | COS/FUV, TIME-TAG, PSA | $\begin{aligned} & \text { G130M } \\ & 1222 \mathrm{~A} \end{aligned}$ | BUFFER-TIME=75 <br> 4; <br> FP-POS=3; <br> FLASH=S0200D03 <br> 6; <br> WAVECAL=YES; <br> LIFETIME-POS=A <br> LTERNATE |  | 146 Secs (146 Secs) | [1] |
|  |  |  |  |  |  |  |  |
|  | $\begin{array}{ll} 1 & \text { G130M/130 } \\ \text { 9- BASEI } & \text { (1) AZV18 } \\ \text { NE SPELT } \\ \text { RUM } \\ \text { RCOS.sp. } 617 \\ & \text { 129) } \end{array}$ | COS/FUV, TIME-TAG, PSA | $\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$ | BUFFER-TIME=44 <br> 4; <br> FP-POS=3; <br> FLASH=S0200D03 <br> 6; <br> WAVECAL=YES; <br> LIFETIME-POS=A <br> LTERNATE | Sequence 11-19 Non -Int in ACQ/PEAKD TEST (02) | 170 Secs (170 Secs) <br> $==\gg$ | [2] |
| Comments: Spectrum of source to define correct location of star when it is centered in NUV (COS.sp.617129). $B T=666 *(2 / 3)=\sim 444$. This will get us S/N~10 per RE in $122.36 s$ lamp flash |  |  |  |  |  |  |  |

Proposal 13636 - ACQ/PEAKD TEST (02) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}

| 12 | G130M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=60 | POS TARG -1.6,nul | Sequence 11-19 Non | 75 Secs (75 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OSTARG + SPECTRU |  | 1309 A | 0 ; |  | -Int in ACQ/PEAKD | [==>] |  |
|  | $\begin{aligned} & \text { M1 (-1.6) } \\ & \text { (COS.sp. } 617 \end{aligned}$ |  |  | FLASH=YES; |  |  |  | [2] |
|  | 129) |  |  | LIFETIME-POS=A <br> LTERNATE |  |  |  |  |
| Comments: POSTARG TO SIMULATE 9x0.4" ACQ/PEAKD. This is the $x=-1.6$ " position. $S / N=60$ is reached in 2 seconds. We want to get a decent look at the spectrum, so we'll observe for 20 seconds. |  |  |  |  |  |  |  |  |
|  | G130M-P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=60 <br> 0; <br> FP-POS=3; <br> FLASH=YES; <br> LIFETIME-POS=A <br> LTERNATE | POS TARG -1.2,null | Sequence 11-19 Non -Int in ACQ/PEAKD TEST (02) | $37.5 \mathrm{Secs}(37.5 \mathrm{Secs})$ |  |
|  | OSTARG + SPECTRU |  | 1309 A |  |  |  | [==>] | [2] |
|  | $\begin{aligned} & \text { (COS. } 1.5 .2) 617 \\ & \text { (1) } \end{aligned}$ |  |  |  |  |  |  |  |
|  | 129) |  |  |  |  |  |  |  |
| Comments: POSTARG TO SIMULATE ACQ/PEAKD. his is the $x=-1.2$ " position. $S / N=60$ is reached in 2 seconds. We want to get a decent look at the spectrum, so we'll observe for 20 seconds. |  |  |  |  |  |  |  |  |
|  | G130M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=60 <br> 0 ; <br> FP-POS=3; <br> FLASH=YES; <br> LIFETIME-POS=A LTERNATE | POS TARG -0.8,nul | Sequence 11-19 Non -Int in ACQ/PEAKD TEST (02) | 25 Secs (25 Secs) |  |
|  | OSTARG + <br> SPECTRU |  | 1309 A |  |  |  | [==>] | [2] |
|  | (COS.sp. 617 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Comments: POSTARG TO SIMULATE ACQ/PEAKD. his is the $x=-0.8$ " position. $S / N=60$ is reached in 2 seconds. We want to get a decent look at the spectrum, so we'll observe for 20 seconds. |  |  |  |  |  |  |  |  |
| 15 | G130M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=44 <br> 4; <br> FP-POS=3; <br> FLASH=YES; <br> LIFETIME-POS=A <br> LTERNATE | POS TARG -0.4,nul | Sequence 11-19 Non -Int in ACQ/PEAKD TEST (02) | 20 Secs (20 Secs) | [2] |
|  | OSTARG + <br> SPECTRU <br> M4 (-0.4) |  | $1309 \text { A }$ |  |  |  | [==>] |  |
|  | (COS.sp. 617 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Comments: POSTARG TO SIMULATE ACQ/PEAKD. his is the $x=-0.4$ " position. $S / N=60$ is reached in 2 seconds. We want to get a decent look at the spectrum, so we'll observe for 20 seconds. |  |  |  |  |  |  |  |  |
|  | G130M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=44 <br> 4; <br> FP-POS=3; <br> FLASH=YES; <br> LIFETIME-POS=A <br> LTERNATE | POS TARG 0.4,null | Sequence 11-19 Non -Int in ACQ/PEAKD TEST (02) | 20 Secs (20 Secs) | [2] |
|  | OSTARG + <br> SPECTRU |  | 1309 A |  |  |  | [==>] |  |
|  | (COS.sp. 617 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Comments: POSTARG TO SIMULATE ACQ/PEAKD. This is the $x=+0.4^{\prime \prime}$ position. $S / N=60$ is reached in 2 seconds. We want to get a decent look at the spectrum, so we'll observe for 20 seconds. |  |  |  |  |  |  |  |  |
|  | G130M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=60 <br> 0 ; <br> FP-POS=3; <br> FLASH=YES; <br> LIFETIME-POS=A <br> LTERNATE | POS TARG 0.8 ,null | Sequence 11-19 Non -Int in ACQ/PEAKD TEST (02) | 25 Secs ( 25 Secs) | [2] |
|  | OSTARG + <br> SPECTRU |  | 1309 A |  |  |  | [==>] |  |
|  | (COS.sp. 617 |  |  |  |  |  |  |  |
|  | 129) |  |  |  |  |  |  |  |
| Comments: POSTARG TO SIMULATE ACQ/PEAKD. This is the $x=+0.8^{\prime \prime}$ position. $S / N=60$ is reached in 2 seconds. We want to get a decent look at the spectrum, so we'll observe for 20 seconds. |  |  |  |  |  |  |  |  |
|  | G130M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=60 <br> 0 ; <br> FP-POS=3; <br> FLASH=YES; <br> LIFETIME-POS=A <br> LTERNATE | POS TARG 1.2,null | Sequence 11-19 Non -Int in ACQ/PEAKD TEST (02) | 37.5 Secs ( 37.5 Secs ) | [2] |
|  | OSTARG + <br> M7 (1.2) |  | $1309 \mathrm{~A}$ |  |  |  | [==>] |  |
|  | (COS.sp. 617 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Proposal 13636 - ACQ/PEAKD TEST (02) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}
 $(A+B))$


Comments: Confirmation Spectrum after the PEAKD (COS.sp.617129). BT $=666 *(2 / 3)=\sim 444$. This will get us $S / N \sim 10$ per RE in $122 s$, we are forced to use less due to time constraints.

| 22 | G130M - A | (21) AZV18-OFFSE COS/FUV, ACQ/PEAKD, PSA |
| :--- | :--- | :--- |
|  | CQ/PEAKD T-AD-0.3 |  |

## G130M

NUM-POS=9; COS
132)


Sequence 22-23 Non 2 Secs (2 Secs)
Int in ACQ

LTERNATE
Comments: $9 x 0.3^{\prime \prime} A C Q / P E A K D$ on an off centered target. The target is defined $0.3^{\prime \prime}$ in the $+A D$ direction from the actual target, so the target will actually now be $0.3^{\prime \prime}$ off in the $-A D$ direction.
23 G130M - B (21) AZV18-OFFSE COS/FUV, TIME-TAG, PSA G130M BUFFER-TIME 4
ASELINE S T-AD-0.3 B-OFFE COS/FUV, THE-TAG, PSA G130M B
PECTRUM $\begin{array}{ll}\text { T-AD-0.3 } & 1309 \mathrm{~A}\end{array}$
4;
(COS.sp. 617
FP-POS=3;
FLASH=YES;

| Sequence 22-23 Non | 62 Secs $(62$ Secs) |
| :--- | :--- |
|  |  |

FLASH=YES;
LTERNATE
-Int in ACQ/PEAKD
TEST (02)

| 62 Secs (62 Secs) |  |  |
| :--- | :--- | :--- |
| $[==>]$ |  |  |
|  |  | $[2]$ |

 , so the target is actually at $+0.8^{\prime \prime}$ when we start the ACQ/PEAKD pattern. (COS.sp.617129). BT=666* $(2 / 3)=\sim 444$. This will get us $S / N \sim 10$ per RE in $122 s$, we are forced to use less due to time constraints.
24 G130M - A (22) AZV18-OFFSE COS/FUV, ACQ/PEAKD, PSA G130M NUM-POS=7;
CQ/PEAKD T-AD+0.5
(COS.sa. 617
132)

1309 A STEP-SIZE=0.55;
Sequence $24-25$ Non 2 Secs (2 Secs)

| -Int in ACQ/PEAKD |
| :--- | :--- |
| TEST (02) | [==>]

LIFETIME-POS=A
TEST (02)
$\qquad$

LTERNATE
Comments: $9 \times 0.55$ ACQ/PEAKD on an off centered target, this time the target is $0.8^{\prime \prime}$ off to the $+A D$.
25 G130M-B (22) AZV18-OFFSE COS/FUV, TIME-TAG, PSA ASELINE S T-AD+0.5
PECTRUM
129)

| G130M | BUFFER-TIME=44 |
| :--- | :--- |
| 1309 A | $4 ;$ |
|  | FP-POS=3; |
|  | FLASH=YES; |
|  | LIFETIME-POS=A |
|  | LTERNATE |

Sequence 24-25 Non
-Int in ACQ/PEAKD
TEST (02)

| 63 Secs (63 Secs) |  |
| :--- | :---: |
| $[==>]$ |  |
|  | $[2]$ |

 o use less due to time constraints.

Proposal 13636 - ACQ/PEAKD TEST (02) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}


Proposal 13636-ACQ/PEAKD TEST (02) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}


## Proposal 13636, ACQ/PEAKXD TEST G130M (03), implementation <br> Thu Sep 11 01:02:21 GMT 2014

## Diagnostic Status: Warning

Scientific Instruments: COS/NUV, COS/FUV
Special Requirements: SCHED 100\%; ORIENT 29D TO 31 D; BETWEEN 27-OCT-2014:00:00:00 AND 09-NOV-2014:00:00:00
 This will allow us to measure the plate scale. The $>+/-0.5^{\prime \prime}$ offsets have expanded exposure times to compensate for vignetting. To maintain $S / N$, the scale factor for the exposure times should be :
\%LOSS ET equivalent/second"
$\begin{array}{lll}0.00 & 0.00 & 1.00\end{array}$
$\begin{array}{llll}0.30 & 0.00 & 1.00\end{array}$
$\begin{array}{lll}0.60 & 6.67 & 1.07\end{array}$
$\begin{array}{lll}1.10 & 40.00 & 1.67\end{array}$
$\begin{array}{lll}1.60 & 73.33 & 3.75\end{array}$
 have time for 225s at +/-1.6"

After obtaining the plate scales, we test PEAKXD at offsets of $+/-0.5,+/-1.0$ and $+/-1.5^{\prime \prime}$, using the final WCA-to-PSA offsets, and the initial plate scales estimates.
The roll angle for 27-OCT-2014 till 9-Nov-2014 is 30 degrees (+/- 1 degree, visits 3-5)
© (ACQ/PEAKXD TEST G130M (03)) Warning (Form): COS ACQ/PEAKXD exposure should be followed by an ACQ/PEAKD exposure in the Visit.
(ACQ/PEAKXD TEST G130M (03)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
O (ACQ/PEAKXD TEST G130M (03)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting. (ACQ/PEAKXD TEST G130M (03)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE

Proposal 13636 - ACQ/PEAKXD TEST G130M (03) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L. \#

## Name

AZV18
RA: $004712.1700(11.8007083 \mathrm{~d})$
Dec: $-730632.68(-73.10908 d)$
Proper Motion RA: -0.0003 sec of time/yr
Proper Motion Dec: $-0.0035 \mathrm{arcsec} / \mathrm{yr}$

Fluxes
Miscellaneous
(1)

Proper Motion Dec: -0.0035 arcsec/yr
$\mathrm{V}=12.48$
Reference Frame: ICRS

Equinox: J2000
Epoch of Position: 2000
Comments: B2Ia, Magellanic Clouds. Nominal ETC exposure times from spectrum supplied by D. Lennon:
NUV, MIRRORA, BOA: 27s (COS.ta.360711)
FUV, G130M, 1309, PSA: 2s (COS.sa.360701) \& 182s S/N=10 spectroscopy (COS.sp.360698)
FUV, G140L, 1105: 038s $S / N=10$ spectroscopy (COS.sp.389720)
FUV, G160M, 1600:0215s S/N=10 spectroscopy (COS.sp.389715)

| (3) | $\begin{aligned} & \text { AZV18-OFFSET- } \\ & \text { XD }+0.5 \end{aligned}$ | Offset from AZV18 | $\mathrm{V}=12.48$ | Offset Position (AZV18-OFFSET-XD+0.5) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | RA Offset: 1.34156E-4 Degrees | $(\mathrm{B}-\mathrm{V})=+0.04$ |  |

Dec Offset: 0.12941 Arcsec

Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle is $30+/-1$ degree and is valid for 14-OCT-2014 till 14-Nov-2014.
AZV18 0.5 " offset for ACQ/PEAKXD $(d A D, d X D)=\left(0,-0.5^{\prime \prime}\right)=0.5$ "@ $15 d$ West of South
ARA $=-0.5 " * \cos (15 d)=-0.482963 "=-0.000134156 d$
$d D E C=-0.5^{\prime *} \sin (15 d)=-0.129410^{\prime \prime}$
$d D E C=-0.5^{\prime \prime *} \sin (15 d)=-0.129410^{\prime \prime}$
To move the target to this location, the offset should have the opposite sign in the offsets above.
AZV18-OFFSET- Offset from AZV18
XD+1.0
RA Offset: $2.68313 \mathrm{E}-4$ Degrees
$\mathrm{V}=12.48$
Offset Position (AZV18-OFFSET-XD+1.0)

Comments: his target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle is $30+/-1$ degree and is valid for 14-OCT-2014 till 14-Nov-2014.
AZV18 1.0" offset for ACQ/PEAKXD $\left(0,-1.0^{\prime \prime}\right)=1 " @ 15 d ~ W ~ o f ~ S ~$
$d R A=-1.0^{\prime \prime *} * \cos (15 d)=-0.965926^{\prime \prime}=-0.000268313 d$
$d D E C=-1.0^{\prime \prime *} \sin (15 d)=-0.258819^{\prime \prime}$
To move the target to this location, the offset should have the opposite sign in the offsets above.

| (5) | AZV18-OFFSET-$\mathrm{XD}+1.5$ | Offset from AZV18 | $\mathrm{V}=12.48$ | Offset Position (AZV18-OFFSET-XD+1.5) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | RA Offset: 4.02469E-4 Degrees | $(\mathrm{B}-\mathrm{V})=+0.04$ |  |

Comments: his target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle is 30 +/- 1 degree and is valid for 14-OCT-2014 till 14-Nov-2014.
AZV18 1.5" offset for ACQ/PEAKXD (0,-1.5")=1.5"@ $15 d$ W of S
$d R A=-1.5^{\prime \prime} * \cos (15 d)=-1.44889^{\prime \prime}=-0.000402469 d$
$d D E C=-1.5^{\prime *} \sin (15 d)=-0.388229^{\prime \prime}$
To move the target to this location, the offset should have the opposite sign in the offsets above.

Proposal 13636 - ACQ/PEAKXD TEST G130M (03) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{$ L...

 econds, since it is heavily vignetted. We FLASH just to make sure the target is not drifting in raw coordinates due to thermal variations.

| 4 | G130M - P | (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=60 | POS TARG null,-1.1 | Sequence 2-10 Non-I | 167 Secs (167 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OSTARG + |  |  | $1309 \mathrm{~A}$ | $0$ |  | nt in ACQ/PEAKXD | [==>] |  |
|  | M2 (-1.1) |  |  |  | FP-POS=3; |  | TEST Gl30M (03) |  |  |
|  | (COS.sp. 617 |  |  |  | FLASH=YES; |  |  |  | [1] |
|  | 094) |  |  |  | LIFETIME-POS=A LTERNATE |  |  |  |  |

 seconds, since are $>40 \%$ vignetted.

| G130M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=50 | POS TARG null,-0.6 | Sequence 2-10 Non-I | 107 Secs (107 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OSTARG + ${ }_{\text {SPECTRU }}+$ |  | $1309 \text { A }$ |  |  | nt in ACQ/PEAKXD | [==>] |  |
| $\text { M3 }(-0.6)$ |  |  | FP-POS=3; |  | TEST Gl30M (03) |  |  |
| (COS.sp. 617 |  |  | FLASH=YES; |  |  |  | [1] |
| 094) |  |  | LIFETIME-POS=A LTERNATE |  |  |  |  |

 seconds.

| 6 | G130M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=44 | POS TARG null,-0.3 | Sequence 2-10 Non-I | 100 Secs (100 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OSTARG + |  | 1309 A |  |  | nt in ACQ/PEAKXD | [==>] |  |
|  | SPECTRU <br> M4 (-0.3) |  |  | FP-POS=3; |  | TEST G130M (03) |  |  |
|  | (COS.sp. 617 |  |  | FLASH=YES; |  |  |  | [1] |
|  | 094) |  |  | LIFETIME-POS=A LTERNATE |  |  |  |  | econds.


| 7 | G130M - P | (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=44 | POS TARG null, 0.3 | Sequence 2-10 Non-I | 100 Secs (100 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OSTARG + |  |  | 1309 A | 4; |  | nt in ACQ/PEAKXD | [==>] |  |
|  |  |  |  |  | FP-POS=3; |  | G |  |  |
|  | (COS.sp. 617 |  |  |  | FLASH=YES; |  |  |  | [1] |
|  | 094) |  |  |  | LIFETIME-POS=A <br> LTERNATE |  |  |  |  |

 conds.

 conds.

 conds, since are $>40 \%$ vignetted.

| 10 | G130M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G130M | BUFFER-TIME=60 | POS TARG null,1.6 | Sequence 2-10 Non-I | 225 Secs (225 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OSTARG + |  | 1309 A | $0$ |  | nt in ACQ/PEAKXD | [==>] |  |
|  | M8 (-1.6) |  |  | FP-POS=3; |  | TEST Gi30M (03) |  |  |
|  | (COS.sp. 617 |  |  | FLASH=YES; |  |  |  | [1] |
|  | 094) |  |  | LIFETIME-POS=A <br> LTERNATE |  |  |  |  |

Comments: POSTARG TO Move to $Y=$
econds, since it is heavily vignetted.
11 G130M-PE (1) AZV18 COS/FUV, ACQ/PEAKXD, PSA G130M LIFETIME-POS=A
AKXD- Cen
tered
(COS.sa. 617
1309 A LTERNATE

| Sequence 11-12 Non | 10 Secs $(10$ Secs $)$ |  |
| :--- | :--- | :--- |
| -Int in ACQ/PEAKX | D |  |
| D TEST G130M (03 |  |  |
| $)$ | $[==>]$ |  |
|  |  |  |

Comments: ETC Request ID: COS.sa. 617140 Requested Signal/Noise Ratio $=60.000$ gives: Time $=1.3755$ seconds. Time Required for Requested SNR in Segment A only:2.3416
If we have the offsets right, the target should not move.
12 G130M - B (1) AZV18 COS/FUV, TIME-TAG, PSA
ASELINE S
PECTRUM
(COS.sp. 617
094)
G130M
1309 A

| Sequence 11-12 Non | 169 Secs (169 Secs) |  |
| :--- | :--- | :--- |
| -Int in ACQ/PEAKX | $[==>]$ |  |
| D TEST G130M $(03$ |  |  |
| ) |  |  |
|  |  |  |

Comments: Spectrum of source to test previous ACQ/PEAKXD centering. COS.sp. 617094 gives $S / N / R E=10$ in 125 seconds, $B T=2 / 3 * 666$ or 444 .
13 G130M - PE (3) AZV18-OFFSET COS/FUV, ACQ/PEAKXD, PSA AKXD-XD -XD+0.5
(30
1309 A LTERNATE Sequence 13-14 Non
-Int in ACQ/PEAKX
D TEST G130M (03
10 Secs ( 10 Secs ) $+0.5$
(COS.sa. 617
140)

BUFFER-TIME=4 4;
FP-POS=3;
FLASH=YES;
LIFETIME-POS=A
LTERNATE
$\square$
$\qquad$
)

Proposal 13636 - ACQ/PEAKXD TEST G130M (03) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L...


Proposal 13636 - ACQ/PEAKXD TEST G130M (03) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L.


Proposal 13636-ACQ/PEAKXD TEST G130M (03) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L.



[^0]Proposal 13636 - ACQ/PEAKXD TEST G160M (04) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L.

Comments: B2Ia, Magellanic Clouds. Nominal ETC exposure times from spectrum supplied by D. Lennon:
NUV, MIRRORA, BOA: 27s (COS.ta.360711)
FUV, G130M, 1309, PSA: 2s (COS.sa.360701) \& 182s S/N=10 spectroscopy (COS.sp.360698)
FUV, G140L, 1105: 038s S/N=10 spectroscopy (COS.sp.389720)
FUV, G160M, 1600:0215s S/N=10 spectroscopy (COS.sp.389715)

| (3) | $\begin{aligned} & \text { AZV18-OFFSET- } \\ & \text { XD }+0.5 \end{aligned}$ | Offset from AZV18 | $\mathrm{V}=12.48$ | Offset Position (AZV18-OFFSET-XD+0.5) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | RA Offset: 1.34156E-4 Degrees | $(\mathrm{B}-\mathrm{V})=+0.04$ |  |

RA Ofset. 1.34156 E 4 Degrees
$(B-V)=+0.04$
Dec Offset: 0.12941 Arcsec
Comments: This target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle is $30+/-1$ degree and is valid for 14-OCT-2014 till 14-Nov-2014.
AZV18 0.5" offset for ACQ/PEAKXD (dAD, dXD $)=\left(0,-0.5^{\prime \prime}\right)=0.5^{\prime \prime} @ 15 d$ West of South
$d R A=-0.5^{\prime \prime *} \cos (15 d)=-0.482963 \prime=-0.000134156 d$
$d D E C=-0.5^{\prime \prime *} \sin (15 d)=-0.129410^{\prime \prime}$
To move the target to this location, the offset should have the opposite sign in the offsets above.
(4)

AZV18-O
Offset from AZV18
$\mathrm{V}=12.48$
Offset Position (AZV18-OFFSET-XD+1.0)

는
Comments: his target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only
The roll angle is $30+/-1$ degree and is valid for 14-OCT-2014 till 14-Nov-2014.
AZV18 1.0" offset for ACQ/PEAKXD $\left(0,-1.0^{\prime \prime}\right)=1$ "@ $15 d$ W of $S$
$d R A=-1.0^{\prime \prime *} * \cos (15 d)=-0.965926^{\prime \prime}=-0.000268313 d$
$d D E C=-1.0^{\prime \prime *} \sin (15 d)=-0.258819^{\prime \prime}$
To move the target to this location, the offset should have the opposite sign in the offsets above.

| (5) | AZV18-OFFSET-$\mathrm{XD}+1.5$ | Offset from AZV18 | $\mathrm{V}=12.48$ | Offset Position (AZV18-OFFSET-XD+1.5) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | RA Offset: 4.02469E-4 Degrees | $(\mathrm{B}-\mathrm{V})=+0.04$ |  |

Comments: his target is offset $1.0^{\prime \prime}$ in the XD direction, and is valid for visits 3-5 only.
The roll angle is $30+/-1$ degree and is valid for 14-OCT-2014 till 14-Nov-2014.
AZV18 1.5" offset for ACQ/PEAKXD (0,-1.5")=1.5"@ $15 d$ W of S
$d R A=-1.5^{\prime \prime *} \cos (15 d)=-1.44889^{\prime \prime}=-0.000402469 d$
$d D E C=-1.5^{\prime *} \sin (15 d)=-0.388229^{\prime \prime}$
To move the target to this location, the offset should have the opposite sign in the offsets above.

Proposal 13636 - ACQ/PEAKXD TEST G160M (04) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update $\{$ L..


$$
\begin{aligned}
& \text { Comments: POSTARG TO } \\
& \text { s heavily vignetted }(67 \%) .
\end{aligned}
$$


 s 33\% vignetted.

| 5 | G160M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G160M | BUFFER-TIME=60 | POS TARG null,-0.6 | Sequence 2-10 Non-I | 107 Secs (107 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OSTARG + |  | $1600 \mathrm{~A}$ |  |  | nt in ACQ/PEAKXD TEST G160M (04) | [==>] |  |
|  | $\begin{aligned} & \text { SPECTRU } \\ & \text { M3 }(-0.6) \end{aligned}$ |  |  | FP-POS=3; |  | TEST G160M (04) |  |  |
|  | (COS.sp. 617 |  |  | FLASH=YES; |  |  |  | [1] |
|  | 142) |  |  | LIFETIME-POS=A LTERNATE |  |  |  |  |

Comments: POSTARG TO Move to $Y=-0.6 . S / N=60$ in 4-6s. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for 107 seconds.

| 6 | G160M - P | (1) AZV18 | COS/FUV, TIME-TAG, PSA | G160M | BUFFER-TIME=51 | POS TARG null,-0.3 | Sequence 2-10 Non-I | 100 Secs (100 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OSTARG + |  |  | 1600 A | 3; |  | nt in ACQ/PEAKXD <br> TEST G160M (04) | [==>] |  |
|  | $\begin{aligned} & \text { SPECTRU } \\ & \text { M4 }(-0.3) \end{aligned}$ |  |  |  | FP-POS=3; |  | TEST G160M (04) |  |  |
|  | (COS.sp. 61 |  |  |  | FLASH=YES; |  |  |  | [1] |
|  | 142) |  |  |  | LIFETIME-POS=A LTERNATE |  |  |  |  |

 617142, $S / N / R E=10(1620 A)=220 . B T=2 / 3 * 769=513$

Proposal 13636 - ACQ/PEAKXD TEST G160M (04) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L..
OSTARG +
SPECTRU
M5 (0.3)
(COS.sp. 617
142)
FP-POS=3;
FLASH=YES
TEST G160M (04)
[==>]
LIFETIME-POS=A
LTERNATE
 $17142, S / N / R E=10(1620 A)=220 . B T=2 / 3 * 769=513$


Comments: POSTARG TO Move to $Y=0.6 . S / N=60$ in 4-6s. But, we are trying to determine the local plate scale of the detector, so want to get a decent look at the spectrum, so we'll observe for $\sim 107$ seconds.

| 9 | G160M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G160M | BUFFER-TIME=70 | POS TARG null,1.1 | Sequence 2-10 Non-I | 167 Secs (167 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OSTARG + | COS/FUV, TME-TAG, PSA | $1600 \mathrm{~A}$ | 0; | POS TARG null, 1 | nt in ACQ/PEAKXD | [==>] |  |
|  | SPECTRU |  |  | FP-POS=3; |  | TEST G160M (04) | l==> |  |
|  | (COS.sp. 617 |  |  | FLASH=YES; |  |  |  | [1] |
|  | 142) |  |  | LIFETIME-POS=A LTERNATE |  |  |  |  |

 $33 \%$ vignetted.

| 10 | G160M - P (1) AZV18 | COS/FUV, TIME-TAG, PSA | G160M | BUFFER-TIME=80 | POS TARG null,1.6 | Sequence 2-10 Non-I | 205 Secs (205 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OSTARG + SPECTRU |  | 1600 A | $0$ |  | nt in ACQ/PEAKXD TEST G160M (04) | [==>] |  |
|  | M8 (1.6) |  |  | FP-POS=3; |  |  |  |  |
|  | (COS.sp. 617 |  |  | FLASH=YES; |  |  |  | [1] |
|  | 142) |  |  | LIFETIME-POS=A LTERNATE |  |  |  |  |

 heavily vignetted (67\%).

| 11 | G160M - PE (1) AZV18 | COS/FUV, ACQ/PEAKXD, PSA | G160M | LIFETIME-POS=A | Sequence 11-12 Non | 10 Secs (10 Secs) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AKXD - Ce <br> ntered $\text { (COS.sa. } 617$ <br> 141) |  | 1600 A | LTERNATE | -Int in ACQ/PEAKX D TEST G160M (04 ) | [==>] | [2] |
| Comments: COS.sa.617141. $\mathrm{S} / \mathrm{N}=60.00$ : Time Required for Requested SNR in Segment A only:4.2322 |  |  |  |  |  |  |  |
| 12 | G160M - B (1) AZV18 |  |  |  |  | 150 Secs (150 Secs) |  |
|  | ASELINE S |  |  |  | -Int in ACQ/PEAKX | [==>] |  |
|  | PECTRUM $\text { (COS.sp. } 617$ |  |  | COS/FUV, TIME-TAG, PSA $\begin{array}{lll}\text { G160M } \\ 1600 \mathrm{~A}\end{array}$ | D TEST G160M (04 |  |  |
|  | 142) |  |  |  |  |  | [2] |
|  |  |  |  |  |  |  |  |

 e constraints, the exposure time has been dropped to 140s.
13 G160M - PE (3) AZV18-OFFSET COS/FUV, ACQ/PEAKXD, PSA AKXD (+0. -XD+0.5


| 10 Secs $(10$ Secs $)$ |  |
| :--- | :--- |
| $[==>]$ | $[2]$ |

141) 

Comments: COS.sa.617141. $S / N=60.00$ : Time Required for Requested $S N R$ in Segment $A$ only: $4.2 s$

Proposal 13636 - ACQ/PEAKXD TEST G160M (04) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L...


Proposal 13636 - ACQ/PEAKXD TEST G160M (04) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L.


Proposal 13636 - ACQ/PEAKXD TEST G160M (04) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L.


Proposal 13636 - ACQ/PEAKXD TEST G160M (04) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{L.


# Proposal 13636, ACQ/PEAKXD TEST G140L (05), implementation <br> Thu Sep 11 01:02:22 GMT 2014 

## Diagnostic Status: Warning

## Scientific Instruments: COS/NUV, COS/FUV

Special Requirements: SCHED 100\%; ORIENT 29D TO 31 D; BETWEEN 27-OCT-2014:00:00:00 AND 09-NOV-2014:00:00:00
 $0.6,-0.3,0.3,0.6,1.1,1.6$ ) " in the XD direction. This will allow us to measure the plate scale. This will allow us to measure the plate scale. The > +/- 0.5 " offsets have expanded exposure times to compensate for
$\stackrel{\pi}{5}$ vignetting. To maintain $S / N$, the scale factor for the exposure times should be :

OFFSET \%LOSS ET equivalent/secondET
0.00
$0.00 \quad 1.0028 \mathrm{~s}$
$0.60 \quad 6.67 \quad 1.0730 \mathrm{~s}$
$1.10 \quad 40.00 \quad 1.6747$
$1.60 \quad 73.33 \quad 3.75105 \mathrm{~s}$
We then proceed to test PEAKXD at offsets of +/-0.5, +/-1.0 and +/-1.5"
The roll angle for 27-OCT-2014 till 9-Nov-2014 is 30 degrees (+/- 1 degree, visits 3-5)
$\boldsymbol{\mathcal { J }}$ (ACQ/PEAKXD TEST G140L (05)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.
(ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
(ACQ/PEAKXD TEST G140L (05)) Warning (Form): COS ACQ/PEAKXD exposure should be followed by an ACQ/PEAKD exposure in the Visit.
(ACQ/PEAKXD TEST G140L (05)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE

Proposal 13636 - ACQ/PEAKXD TEST G140L (05) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LE.


Proposal 13636 - ACQ/PEAKXD TEST G140L (05) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LE.


Proposal 13636 - ACQ/PEAKXD TEST G140L (05) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LE.


Proposal 13636 - ACQ/PEAKXD TEST G140L (05) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LE...


Proposal 13636 - ACQ/PEAKXD TEST G140L (05) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LE.


|  |  |
| :---: | :---: |




Proposal 13636 - LP3 Verification Visit (06) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}


Comments: ACQ/PEAKKD

Proposal 13636 - LP3 Verification Visit (06) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}
ONFIRMA
(6) WD1657+343 COS/FUV, TIME-TAG, PSA
G130M
BUFFER-TIME=29
TRUM
(COS.sp
166)
FP-POS=3;
FLASH=YES

Sequence 6-8 Non-In
t in LP3 Verification

| 17 Secs (17 Secs) |  |
| :--- | :--- |
| $[==>]$ |  |
|  |  |
|  |  |

Visit (06)

Comments: ETC Request ID: COS.sp.617166, SN $=3.000$ at wavelength 1310.00A (per resolution element) gives: Time $=8.6358$ seconds

| 9 | $\begin{aligned} & \text { G140L - BA } \\ & \text { SELINE SP } \\ & \text { S2) WD1657+343- } \\ & \text { ECTRUM } \\ & \text { (COS.sp. } 617 \\ & \text { 167) } \end{aligned}$ |  | COS/FUV, TIME-TAG, PSA | $\begin{aligned} & \text { G140L } \\ & 1280 \mathrm{~A} \end{aligned}$ | BUFFER-TIME=42 | Sequence 9-11 Non-I | 9 Secs (9 Secs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | nt in LP3 Verificatio | [==>] |
|  |  |  | FP-POS=3; |  | $n$ Visit (06) |  |
|  |  |  | FLASH=YES |  |  |  |

Comments: ETC Request ID: COS.sp. 617167, SNR $=3.000$ at wavelength 1310 A (per resolution element) gives: Time $=1.5274$ seconds, $B T=2 / 3 *(641)=427$
10 G140L - PE (62) WD1657+343- COS/FUV, ACQ/PEAKXD, PSA
AKXD-XD- OFFSET-XD-1.0
1.0

G140L
(COS.sp. 617
1280 A
168)
Sequence 9-11 Non-I 3 Secs (3 Secs)
nt in LP3 (06)

| 3 Secs (3 Secs) |
| :--- |
| $[==>]$ |

- 

Comments: ETC Request ID: COS.sa. 617168, SN $=60.000$ gives: Time $=1.7966$ seconds
11 G140L - CO (62) WD1657+343- COS/FUV, TIME-TAG, PSA NFIRMATI OFFSET-XD-1.0
ON SPECT
RUM
(COS.sa. 389
908)

| G140L | BUFFER-TIME $=42$ |
| :--- | :--- |
| 1280 A | $7 ;$ |
|  | FP-POS $=3 ;$ |
|  | FLASH $=$ YES |


| Sequence 9-11 Non-I | 9 Secs (9 Secs) |  |
| :--- | :--- | :--- |
| nt in LP3 Verificatio <br> n Visit (06) | $[==>]$ |  |
|  |  |  |

Comments: ETC Request ID: COS.sp. $617166, S N=3.000$ at wavelength 1310.00A (per resolution element) gives: Time $=8.6358$ seconds
12 G140L - BA (6) WD1657+343 COS/FUV, TIME-TAG, PSA G140L BUFFER-TIME=42

| G140L-BA (6) WD1657+343 COS/FUV, TIME-TAG, PSA | G140L | BUFFER-TIME= |  |
| :--- | :--- | :--- | :--- |
| SELINE SP |  | 1280 A | $7 ;$ |
| ECTRUM |  | FP-POS=3; |  |
| (COS.sp. 617 |  | FLASH=YES |  |


| Sequence 12-14 Non | 9 Secs (9 Secs) |  |
| :--- | :--- | :--- |
| Int in LP3 Verificati <br> on Visit (06) | $[==>]$ |  |
|  |  |  |

Comments: ETC Request ID: COS.sp.617167, SNR $=3.000$ at wavelength 1310A (per resolution element) gives: Time $=1.5274$ seconds, $B T=2 / 3 *(641)=427$

| 13 | G140L - PE (6) WD1657+343 | COS/FUV, ACQ/PEAKXD, PSA | G140L |
| :--- | :--- | :--- | :--- |
|  | AKXD-XD |  | 1280 A |
|  | +1.0 |  |  |
|  | (COS.sp. 617 |  |  |
|  | 168) |  |  |


| Sequence 12-14 Non <br> -Int in LP3 Verificati <br> on Visit (06) | 3 Secs (3 Secs) |  |
| :--- | :--- | :--- |
|  |  |  |

Comments: ETC Request ID: COS.sa. 617168, SN $=60.000$ gives: Time $=1.7966$ seconds


Comments: ETC Request ID: COS.sp.617173, $S N R / R E=3$ at wavelength 1610 A gives: Time $=24.8232$ seconds, $B T=2 / 3 * 769=513$

Proposal 13636 - LP3 Verification Visit (06) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}

| 16 | G160M - PE (62) WD1657+343- | COS/FUV, ACQ/PEAKXD, PSA | G160M |
| :--- | :--- | :--- | :--- |
|  | AKXD-XD- OFFSET-XD-1.0 |  | 1600 A |
|  | 1.0 |  |  |
|  | (COS.sa. 617 |  |  |
|  | 171 ) |  |  |

1600 A

Comments: ETC Request ID: COS.sa.617171, SNR $=60$, Time $=2.0012$ seconds Time Required for Requested SNR in Segment A only:9.9563
Time Required for Requested SNR in Segment B only:2.5045


Comments: ETC Request ID: COS.sp.617173, SNR/RE $=3$ at wavelength 1610 A gives: Time $=24.8232$ seconds
18 G160M - O (6) WD1657+343 COS/FUV, TIME-TAG, PSA FFSET SPE
CTRUM
(COS.sp. 617
173)
1600 A 3,

3;
FP-POS=3;

Comments: Check spectrum location.
19 G160M - PE (6) WD1657+343 COS/FUV, ACQ/PEAKXD, PSA
$+\begin{aligned} & \text { AKXD-XD } \\ & +1.0\end{aligned}$
$+1.0$
(COS.sa. 617
171)

Comments: ETC Request ID: COS.sa.617171, SNR $=60$, Time $=2.0012$ seconds
Time Required for Requested SNR in Segment A only:9.9563

| 20 | (6) WD1657+343 | COS/FUV, TIME-TAG, PSA | $\begin{aligned} & \text { G160M } \\ & 1600 \mathrm{~A} \end{aligned}$ | ```BUFFER-TIME=51 3; FP-POS=3; FLASH=YES``` | Sequence 18-20 Non -Int in LP3 Verificati on Visit (06) | 23 Secs (23 Secs) | [2] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | [==>] |  |
| Comments: confirmation spectrum |  |  |  |  |  |  |  |
| 21 | (6) WD1657+343 | COS/FUV, TIME-TAG, PSA | $\begin{aligned} & \text { G130M } \\ & 1309 \mathrm{~A} \end{aligned}$ | ```BUFFER-TIME=29 5; FP-POS=3; FLASH=YES``` | Sequence 21-26 Non -Int in LP3 Verificati on Visit (06) | 12 Secs (12 Secs) |  |
|  |  |  |  |  |  | [==>] | [2] |

Comments: ETC Request ID: COS.sp. $617166, S N=3.000$ at wavelength 1310.00A (per resolution element) gives: Time $=8.6358$ seconds. $B T=2 / 3 *(441)=295$

| 22 | G130M - PE (6) WD1657+343 | COS/FUV, ACQ/PEAKXD, PSA | G130M |
| :--- | :--- | :--- | :--- |
|  | AKXD |  | 1309 A |
|  | (COS.sa. 617 |  |  |
|  | 163) |  |  |


| Sequence 21-26 Non <br> -Int in LP3 Verificati <br> on Visit (06) | 4 Secs (4 Secs) |  |
| :--- | :--- | :--- |

Comments: ETC Request ID: COS.sa.617163, $S N=40.000$, gives: Time $=0.3526$ seconds
Time Required for Requested SNR in Segment A only:0.9820


Comments: ETC Request ID: COS.sp.617166, $S N=3.000$ at wavelength 1310.00 A (per resolution element) gives: Time $=8.6358$ seconds. $B T=2 / 3 *(441)=295$

Proposal 13636 - LP3 Verification Visit (06) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}

| 24 | G130M - PE (6) WD1657+343 | COS/FUV, ACQ/PEAKD, PSA | G130M | NUM-POS=5; |
| :--- | :--- | :--- | :--- | :--- |
|  | AKD |  | 1309 A | STEP-SIZE $=0.8$ |
|  | (COS.sa. 617 |  |  |  |

Sequence 21-26 Non
-Int in LP3 Verificati
on Visit (06)
170)

Comments: ETC Request ID: COS.sa.617170, SNR/RE $=60.000$. gives: Time $=0.7931$ seconds Time Required for Requested SNR in Segment A only:2.2088
Time Required for Requested SNR in Segment B only:1.2375
for Requested SNR Seoment B
G130M - C (6) WD1657+343 COS/FUV, TIME-TAG, PSA ONFIRMA
TION SPEC
TRUM
(COS.sp. 617
166)
G130M $\quad$ B

5;
FP-POS=3;
FLASH=YES

Sequence 21-26 Non 12 Secs (12 Secs)
Int in LP3 Verificati on Visit (06)

Comments: ETC Request ID: COS.sp. 617166, SN $=3.000$ at wavelength 1310.00 A (per resolution element) gives: Time $=8.6358$ seconds. $B T=2 / 3 *(441)=295$
26 G130M - PE (6) WD1657+343 COS/FUV, ACQ/PEAKXD, PSA G130M NUM-POS=5; AKXD with NUM_POS N
$=5$
(COS
(COS.sa. 617 170)

Comments: ETC Request ID: COS.sa.617170, SNR/RE $=60.000$. gives: Time $=0.7931$ seconds Time Required for Requested SNR in Segment A only:2.2088


Comments: ETC Request ID: COS.sp.617173, SNR/RE $=3$ at wavelength 1610 A gives: Time $=24.8232$ seconds, $B T=2 / 3 * 769=513$
160 M
28 G160M - A (61) WD1657+343- COS/FUV, ACQ/SEARCH, PSA G160M CENTER FLUX-W
G160M - A (61) WD1657+343- COS/FUV, ACQ/SEARCH, PSA CQ/SEARC OFFSET-SE-1.4AS H on OFFS ET (COS.sa. 617 174)

Sequence 27-34 Non
-Int in LP3 Verificati -Int in LP3
on Visit (06)

5 Secs (5 Secs)
[==>]
T-FLR;
SCAN-SIZE=3

Comments: ETC Request ID: COS
Time Required for Requested SNR in Segment A only:4.2322
Time Required for Requested SNR in Segment B only: 1.7838
29 G160M-C (61) WD1657+343- COS/FUV, TIME-TAG, PSA G160M ONFIRMA OFFSET-SE-1.4AS

1600 A
TION SPEC
TRUM
(COS.sp. 617
173)

Sequence 21-26 Non 3 Secs (3 Secs)
-Int in LP3 Verificati on Visit (06)

Comments: ETC Request ID: COS.sp. $617173, S N R / R E=3$ at wavelength 1610 A gives: Time $=24.8232$ seconds, $B T=2 / 3 * 769=513$
30 G160M - A (61) WD1657+343- COS/FUV ACQ/PEAKXD PSA G160M
CQ/PEAKX A CQ/PEAKX OFFSET-SE-1.4AS D on OFFS
ET
1600 A
(COS.sa. 617
171)

Comments: ETC Request ID: COS.sa.617171, SNR $=60$, Time $=2.0012$ seconds
Time Required for Requested SNR in Segment A only:9.9563
Time Required for Requested SNR in Segment B only:2.5045

Proposal 13636 - LP3 Verification Visit (06) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}
$\begin{array}{lll}31 & \text { G160M - C } & \text { (61) WD1657+343- } \\ & \text { ONFIRMA } & \text { OFFSET-SE-1.4AS } \\ & \text { TION SPEC } & \end{array}$
COS/FUV, TIME-TAG, PSA
G160M BU
3 ;
TRUM
(COS.sp. 617
173)
UFFER-TIME=5
FP-POS=3;
LASH=YES

Sequence 27-34 Non 23 Secs (23 Secs)
-Int in LP3

| 23 Secs $(23$ Secs) |  |
| :--- | :--- |
| $[==>]$ |  |
|  |  |

[2]
Comments: ETC Request ID: COS.sp. $617173, S N R / R E=3$ at wavelength 1610 A gives: Time $=24.8232$ seconds, $B T=2 / 3 * 769=513$
32 G160M - A (61) WD1657+343- COS/FUV, ACQ/PEAKD, PSA G160M NUM-POS=7;
CQ/PEAKD OFFSET-SE-1.4AS 1600 A STEP-SIZE=0.45 on OFFSET
174)

Comments: ETC Request ID: COS.sa. $617174, S N R=60$, gives: Time $=1.2549$ seconds Time Required for Requested SNR in Segment A only:4.2322
Time Required for Requested SNR in Segment A only:4.2322
33 G160M - C (61) WD1657+343- COS/FUV, TIME-TAG, PSA
ONFIRMA OFFSET-SE-1.4AS G160M

TION SPEC
TRUM
(COS.sp. 617
173)

G160M
BUFFER-TIME=51 POS TARG 0.333,nu Sequence 27-34 Non 23 Secs (23 Secs) 3;
FP-POS=3;
FLASH=YES
on Visit (06)
-
Comments: ETC Request ID: COS.sp. $617173, S N R / R E=3$ at wavelength 1610 A gives: Time $=24.8232$ seconds, $B T=2 / 3 * 769=513$
34 G160M - A (61) WD1657+343- COS/FUV, ACQ/PEAKXD, PSA on OFFS OFFSET-SE-1.4AS
DT NUM P
ET NUM_P
OS=3
(COS.sa. 617
171)

Comments: ETC Request ID: COS.sa.617171, SNR $=60$, Time $=2.0012$ seconds
Time Required for Requested SNR in Segment A only:9.9563
Time Required for Requested SNR in Segment B only:2.5045

Proposal 13636 - LP3 Verification Visit (06) - Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update \{LENA3\}

(


[^0]:    Proposal 13636, ACQ/PEAKXD TEST G160M (04), implementation
    Thu Sep 11 01:02:21 GMT 2014

    ## Diagnostic Status: Warning

    ## Scientific Instruments: COS/NUV, COS/FUV

    Special Requirements: SCHED 100\%; ORIENT 29D TO 31 D; BETWEEN 27-OCT-2014:00:00:00 AND 09-NOV-2014:00:00:00
    Comments: ACQ/PEAKXD Test for G160M. The target is AVZ18 (the SMOV TA target). After obtaining a good spectrum of the centered target, take spectra at the following positions (-1.6,-1.1,-0.6,-
     exposure times should be :

    OFFSET \%LOSS ET equivalent/second"
    $\begin{array}{lll}0.00 & 0.00 & 1.00\end{array}$
    $\begin{array}{lll}0.30 & 0.00 & 1.00\end{array}$
    $\begin{array}{lll}0.60 & 6.67 & 1.07\end{array}$
    $\begin{array}{lll}1.10-40.00 & 1.67\end{array}$
    $\begin{array}{lll}1.60 & 73.33 & 3.75\end{array}$
     have time for 225s at +/- 1.6"

    We then proceed to test PEAKXD at offsets of $+/-0.5,+/-1.0$ and $+/-1.5^{\prime \prime}$
    The roll angle for 27-OCT-2014 till 9-Nov-2014 is 30 degrees ( $+/-1$ degree, visits 3-5)
    ת (ACQ/PEAKXD TEST G160M (04)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
    (ACQ/PEAKXD TEST G160M (04)) Warning (Orbit Planner): POS TARG OUTSIDE OF APERTURE
    (ACQ/PEAKXD TEST G160M (04)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting. (ACQ/PEAKXD TEST G160M (04)) Warning (Form): COS ACQ/PEAKXD exposure should be followed by an ACQ/PEAKD exposure in the Visit.

