14526 - COS NUV MAMA Fold Distribution

Cycle: 24, Proposal Category: CAL/COS
(Availability Mode: RESTRICTED)

INVESTIGATORS

Name	Institution	\boldsymbol{E}-Mail
Mr. Thomas Wheeler (PI) \quad (Contact)	Space Telescope Science Institute	wheeler@stsci.edu
Dr. Alan D. Welty (CoI)	Space Telescope Science Institute	welty@stsci.edu

VISITS

Visit	Targets used in Visit	Configurations used in Visit	Orbits Used	Last Orbit Planner Run	OP Current with Visit?
01	DARK				
DEUTERIUM	COS/NUV S/C	1	29-Jul-2016 13:44:34.0	yes	

1 Total Orbits Used

Abstract

The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as Cycle 23, Proposal 14444.

\section*{OBSERVING DESCRIPTION}

While globally illuminating the detector with a flat field the valid event (VE) rate counter is monitored while various combinations of row and column folds are selected. The procedure is implemented using special commanding. The procedure is described below and in COS TIR 2010-01.

The proposal nomenclature for the various anode fold configurations is: $\mathrm{C} 2=\operatorname{Column} 2, \mathrm{R} 2=\mathrm{Row} 2, \mathrm{C} 3=\mathrm{Column} 3, \mathrm{R} 3=\mathrm{Row} 3, \mathrm{C} 4=\mathrm{Column} 4$,

Proposal 14526 (STScl Edit Number: 1, Created: Friday, July 29, 2016 12:44:35 PM EST) - Overview
$\mathrm{R} 4=\operatorname{Row} 4, \mathrm{C} 5=$ Column 5, $\mathrm{R} 5=\operatorname{Row} 5, \mathrm{C} 6=$ Column 6, and R6 = Row 6. The fold analysis is initiated by selecting the grating/lamp combination appropriate for the test. The following steps are then executed:
Select the count rate monitor and collect 60 seconds of data;
Repeat this for each of the count rate monitors W, X, Y, Z, OR, EV, VE;
Disable all of the selectable folds (C2, C3, C4, C5, C6, R2, R3, R4, R5, R6);
Collect 60 seconds of VE with folds C2, R2 enabled, other folds disabled;
Collect 60 seconds of VE with folds C2, R3 enabled, other folds disabled;
Collect 60 seconds of VE with folds C3, R2 enabled, other folds disabled;
Collect 60 seconds of VE with folds $\mathrm{C} 2, \mathrm{R} 4$ enabled, other folds disabled;
Collect 60 seconds of VE with folds C3, R3 enabled, other folds disabled;
Collect 60 seconds of VE with folds C4, R2 enabled, other folds disabled;
Collect 60 seconds of VE with folds C3, R4 enabled, other folds disabled;
Collect 60 seconds of VE with folds $\mathrm{C} 4, \mathrm{R} 3$ enabled, other folds disabled;
Collect 60 seconds of VE with folds C3, R5 enabled, other folds disabled;
Collect 60 seconds of VE with folds C4, R4 enabled, other folds disabled;
Collect 60 seconds of VE with folds C5, R3 enabled, other folds disabled;
Collect 60 seconds of VE with folds C4, R5 enabled, other folds disabled;
Collect 60 seconds of VE with folds $\mathrm{C} 5, \mathrm{R} 4$ enabled, other folds disabled;
Collect 60 seconds of VE with folds C4, R6 enabled, other folds disabled; Collect 60 seconds of VE with folds C5, R5 enabled, other folds disabled; Collect 60 seconds of VE with folds C6, R4 enabled, other folds disabled; Collect 60 seconds of VE with folds C5, R6 enabled, other folds disabled; Collect 60 seconds of VE with folds C6, R5 enabled, other folds disabled; Collect 60 seconds of VE with folds C6, R6 enabled, other folds disabled;
Enable all selectable folds (C2, C3, C4, C5, C6, R2, R3, R4, R5, R6);
Collect 60 seconds of EV and 5 samples of VE counts to measure any lamp drift; Turn off the lamp;
Select the W count rate monitor and collect 60 seconds of data for the dark rate; Repeat this for each of the other count rate monitors (X, Y, Z, OR, EV, and EV);

Proposal 14526 (STScl Edit Number: 1, Created: Friday, July 29, 2016 12:44:35 PM EST) - Overview

Restore the global monitor to its normal value.

Analysis of the data is performed by creating a histogram binned by the sums
of the fold numbers for columns and rows:
C2R2 $=4$ folds
$\mathrm{C} 2 \mathrm{R} 3+\mathrm{C} 3 \mathrm{R} 2=5$ folds
$\mathrm{C} 2 \mathrm{R} 4+\mathrm{C} 3 \mathrm{R} 3+\mathrm{C} 4 \mathrm{R} 2=6$ folds
$\mathrm{C} 3 \mathrm{R} 4+\mathrm{C} 4 \mathrm{R} 3=7$ folds
$\mathrm{C} 3 \mathrm{R} 5+\mathrm{C} 4 \mathrm{R} 4+\mathrm{C} 5 \mathrm{R} 3=8$ folds
$\mathrm{C} 4 \mathrm{R} 5+\mathrm{C} 5 \mathrm{R} 4=9$ folds
C4R6 + C5R5 + C6R4 = 10 folds
C5R6 + C6R5 = 11 folds
C6R6 = 12 folds
The sum of the 4 to 12 folds is equal to VE. The total number of events $>=4$ folds is EV. The number of events greater than 12 folds is EV-VE. Generate a plot of 4 fold/EV, 5 fold/EV through 12 fold/EV, with (EV-VE)/EV on the abscissa and with the ordinate labeled 4 fold, 5 fold. fold.

Results are sent to the COS Science Team and Vic Argabright of Ball Aerospace.

Additional Comments

Bright Object Protection Considerations. During the execution of the fold analysis some anode folds are disabled. Consequently, the OR counter does not provide a true representation of the OR count and so the Software Global Monitor (SGM) does not trigger until the enabled folds provide enough counts to the OR counter to trigger the SGM's threshold. To compensate, while the fold analysis is running the SGM threshold is reduced to 100,000 counts in a 1.0 second interval, from its nominal value of 20,000 counts in a 0.1 second interval.

This test should only be run with the COS extenal shutter closed.

Special Commanding is used in this proposal.

[^0]Proposal 14526 - NUV Fold Test (01) - COS NUV MAMA Fold Distribution

[^0]: Proposal 14526, NUV Fold Test (01)

 Scientific Instruments: S/C, COS/NUV
 Special Requirements: BETWEEN 01-MAY-2017:00:00:00 AND 01-JUN-2017:00:00:00; PARALLEL
 Comments: Schedule one NUV MAMA fold analysis visit per vear
 Diagnostics
 NUV Fold Test (01)) Warning (Orbit Planner): MAXIMUM DURATION EXCEEDED FOR INTERNAL OR EARTH CALIB SU

 | \# | Label | Target | Config,Mode,Aperture | Spectral Els. | Opt. Params. | Special Reqs. | Groups | Exp. Time (Total)/[Actual Dur.] | Orbit |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | Fold Test Se tup | DARK | S/C, DATA, NONE | | | SAA CONTOUR 32; Same Alignment in SPEC COM INSTR NUV Fold Test (01) | | 20.0 Secs (20 Secs) | |
 | | | | | | | | | [==>] | [1] |
 | Comments: Special setup for NUV Fold Analysis Test. Set the Software Global Monitor to 15,000 ORCOUNTS per sec (sufficient to allow for spike at lamp turn-on). | | | | | | | | | |
 | 2 | Fold Test | DEUTERIUM | COS/NUV, TIME-TAG, FCA | $\begin{aligned} & \text { G185M } \\ & 1850 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \text { CURRENT=MEDIU } \\ & \text { M; } \end{aligned}$ | SPEC COM INSTR ELFOLDTST;
 QESIPARM TARG TYPE FOLD | Same Alignment in NUV Fold Test (01) | 2300.0 Secs (2300 Secs) | |
 | | | | | | | | | [==>] | [1] |
 | | | | | | BUFFER-TIM
 00 | | | | |

 lamp off during the exposure, and the exposure commanding will issue a redundant lamp off command after the exposure.

 Set Software Global monitor (SGM Threshold $=10,000, S G M$ Integration period $=1 \mathrm{sec}$.
 (1) Collect event data during flat field illumination. Collect 60 sec. of data for the following event types: $W, X, Y, Z, O R, E V$, and $V E$.
 (2) Disable MAMA Folds: C2, C3, C4, C5, C6, R2, R3, R4, R5, R6
 (3) Conduct fold analysis. Collect one minute of VE data for following 19 combinations of MAMA folds:
 (a) Enabled: C2, R2; Disabled: C3, C4, C5, C6, R3, R4, R5, R6
 (b) Enabled: C2, R3. Disabled: C3, C4, C5, C6, R2, R4, R5, R6
 (c) Enabled: C3, R2; Disabled: C2, C4, C5, C6, R3, R4, R5, R6
 (d) Enabled: C2, R4; Disabled: C3, C4, C5, C6, R2, R3, R5, R6 (e) Enabled: C3, R3; Disabled: C2, C4, C5, C6, R2, R4, R5, R6 (f) Enabled: C4, R2; Disabled: C2, C3, C5, C6, R3, R4, R5, R6 (g) Enabled: C3, R4; Disabled: C2, C4, C5, C6, R2, R3, R5, R6 (h) Enabled: C4, R3; Disabled: C2, C3, C5, C6, R2, R4, R5, R6 (i) Enabled: C3, R5; Disabled: C2, C4, C5, C6, R2, R3, R4, R6 (j) Enabled: C4, R4; Disabled: C2, C3, C5, C6, R2, R3, R5, R6 (k) Enabled: C5, R3; Disabled: C2, C3, C4, C6, R2, R4, R5, R6 (l) Enabled: C4, R5; Disabled: C2, C3, C5, C6, R2, R3, R4, R6 (m) Enabled: C5, R4; Disabled: C2, C3, C4, C6, R2, R3, R5, R6 (n) Enabled: C4, R6; Disabled: C2, C3, C5, C6, R2, R3, R4, R5 (o) Enabled: C5, R5; Disabled: C2, C3, C4, C6, R2, R3, R4, R6 (p) Enabled: C6, R4; Disabled: C2, C3, C4, C5, R2, R3, R5, R6 (q) Enabled: C5, R6; Disabled: C2, C3, C4, C6, R2, R3, R4, R5 (r) Enabled: C6, R5; Disabled: C2, C3, C4, C5, R2, R3, R4, R6
 (s) Enabled: C6, R6; Disabled: C2, C3, C4, C5, R2, R3, R4, RS
 4) Enable MAMA folds C2, C3, C4, C5, C6, R2, R3, R4, R5, R6
 (5) Check lamp stability by checking EV and VE: Collect 60 sec. of data for EV and VE event types.
 (6) Turn off the deuterium lamp
 (7) Collect event data for detector dark count rate. Collect 60 sec. of data for the following event types: $W, X, Y, Z, O R, E V$, and VE.
 8) At completion of the test, reset SGM to nominal operating level.

