CANDELS Status

Henry Ferguson & Sandy Faber
8 November 2012
CANDELS
Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

~175 team members
~45 institutions
12 countries

Builders:
Harry Ferguson, Sandra Faber, Adam Riess, Steve Rodney
Norman Grogin, Dale Kocevski
Anton Koekemoer
Exposure Strategy

- “Wedding cake” strategy: three layers of J+H

 UDFs: 50-100 orbit depth over ~10 sq arcmin

 DEEP: 8 orbit depth over ~120 sq arcmin

 WIDE: 2 orbit depth over ~700 sq arcmin
CANDELS Fields

Planned Orbit Totals:
- GOODS: 483
- EGS: 90
- UDS: 88
- COSMOS: 88
- SNe Follow-up: 152

Observations
Complete

Observations
Half complete
The CANDELS fields are the deepest multi-wavelength views of the universe.
HST
0.6, 1.25, 1.6 μm
Chandra

0.5-2, 2-8, 5-8 keV
Spitzer/IRAC
3.6+4.5, 5.6, 8 μm
Spitzer/MIPS + Herschel/PACS
24, 100, 160μm
Herschel/SPIRE
250, 350, 500µm
Observing Progress

<table>
<thead>
<tr>
<th>REGION</th>
<th>EPOCH</th>
<th>ORIENT</th>
<th>ORBITS</th>
<th>START DATE</th>
<th>END DATE</th>
<th>Program</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>STST</td>
<td>-</td>
<td>255</td>
<td>1</td>
<td>4-Aug-10</td>
<td>10-Aug-10</td>
<td>test orbit</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1</td>
<td>325</td>
<td>16</td>
<td>8-Oct-10</td>
<td>13-Oct-10</td>
<td>12061</td>
<td>Epoch 1</td>
</tr>
<tr>
<td>UDS</td>
<td>1</td>
<td>45</td>
<td>44</td>
<td>6-Nov-10</td>
<td>20-Nov-10</td>
<td>12064</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>2</td>
<td>25</td>
<td>15</td>
<td>26-Nov-10</td>
<td>1-Dec-10</td>
<td>12061</td>
<td>Epoch 2</td>
</tr>
<tr>
<td>UDS</td>
<td>2</td>
<td>45</td>
<td>44</td>
<td>27-Dec-10</td>
<td>10-Jan-11</td>
<td>12064</td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td>1</td>
<td>68</td>
<td>9</td>
<td>7-Jan-11</td>
<td>10-Jan-11</td>
<td>12061</td>
<td>Skirt</td>
</tr>
<tr>
<td>SD</td>
<td>3</td>
<td>73</td>
<td>15</td>
<td>14-Jan-11</td>
<td>19-Jan-11</td>
<td>12061</td>
<td>Epoch 3</td>
</tr>
<tr>
<td>SW</td>
<td>2</td>
<td>94</td>
<td>9</td>
<td>27-Feb-11</td>
<td>2-Mar-11</td>
<td>12061</td>
<td>Skirt</td>
</tr>
<tr>
<td>SD</td>
<td>4</td>
<td>95</td>
<td>16</td>
<td>2-Mar-11</td>
<td>6-Mar-11</td>
<td>12061</td>
<td>Epoch 4</td>
</tr>
<tr>
<td>EGSa</td>
<td>1</td>
<td>187.3</td>
<td>25</td>
<td>2-Apr-11</td>
<td>9-Apr-11</td>
<td>12063</td>
<td></td>
</tr>
<tr>
<td>EGSa</td>
<td>2</td>
<td>164.9</td>
<td>25</td>
<td>24-May-11</td>
<td>29-May-11</td>
<td>12063</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>5</td>
<td>205</td>
<td>15</td>
<td>3-Jun-11</td>
<td>20-Jun-11</td>
<td>12061</td>
<td>Epoch 5</td>
</tr>
<tr>
<td>SYa</td>
<td>-</td>
<td>205</td>
<td>18</td>
<td>27-May-11</td>
<td>21-Jun-11</td>
<td>12060</td>
<td>2x3 array</td>
</tr>
<tr>
<td>SD</td>
<td>6</td>
<td>250</td>
<td>15</td>
<td>28-Jul-11</td>
<td>6-Aug-11</td>
<td>12062</td>
<td>Epoch 6</td>
</tr>
<tr>
<td>SD</td>
<td>7</td>
<td>295</td>
<td>16</td>
<td>12-Sep-11</td>
<td>23-Sep-11</td>
<td>12062</td>
<td>Epoch 7</td>
</tr>
<tr>
<td>SD</td>
<td>8</td>
<td>340</td>
<td>16</td>
<td>3-Nov-11</td>
<td>7-Nov-11</td>
<td>12062</td>
<td>Epoch 8</td>
</tr>
<tr>
<td>SYb</td>
<td>-</td>
<td>25</td>
<td>27</td>
<td>21-Nov-11</td>
<td>1-Dec-11</td>
<td>12060</td>
<td>3x3 array</td>
</tr>
<tr>
<td>COS</td>
<td>1</td>
<td>307</td>
<td>44</td>
<td>2-Dec-11</td>
<td>15-Dec-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>9</td>
<td>25</td>
<td>15</td>
<td>24-Dec-11</td>
<td>29-Dec-11</td>
<td>12062</td>
<td>Epoch 9</td>
</tr>
<tr>
<td>COS</td>
<td>2</td>
<td>307</td>
<td>44</td>
<td>23-Jan-11</td>
<td>4-Feb-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>10</td>
<td>80</td>
<td>16</td>
<td>15-Feb-12</td>
<td>19-Feb-12</td>
<td>12062</td>
<td>Epoch 10</td>
</tr>
<tr>
<td>ND/NWa</td>
<td>1/1</td>
<td>180</td>
<td>24</td>
<td>31-Mar-12</td>
<td>4-Apr-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND/NWa</td>
<td>2/2</td>
<td>135</td>
<td>26</td>
<td>23-May-12</td>
<td>29-May-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYa</td>
<td>-</td>
<td>90</td>
<td>18</td>
<td>4-Jul-12</td>
<td>15-Jul-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>3</td>
<td>87</td>
<td>15</td>
<td>15-Jul-12</td>
<td>19-Jul-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND/NWb</td>
<td>4/1</td>
<td>25</td>
<td>25</td>
<td>5-Sep-12</td>
<td>13-Sep-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYNE</td>
<td>-</td>
<td>0</td>
<td>8</td>
<td>28-Sep-12</td>
<td>2-Oct-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND/NWb</td>
<td>5/2</td>
<td>331</td>
<td>25</td>
<td>30-Oct-12</td>
<td>8-Nov-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>6</td>
<td>270</td>
<td>15</td>
<td>27-Dec-12</td>
<td>1-Jan-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYb</td>
<td>-</td>
<td>270</td>
<td>27</td>
<td>2-Jan-13</td>
<td>14-Jan-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>7</td>
<td>225</td>
<td>16</td>
<td>20-Feb-13</td>
<td>25-Feb-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGSb</td>
<td>1</td>
<td>187.3</td>
<td>20</td>
<td>2-Apr-13</td>
<td>8-Apr-13</td>
<td>12063</td>
<td></td>
</tr>
<tr>
<td>NYSW</td>
<td>-</td>
<td>180</td>
<td>8</td>
<td>8-Apr-13</td>
<td>10-Apr-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>8</td>
<td>180</td>
<td>16</td>
<td>11-Apr-13</td>
<td>16-Apr-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGSb</td>
<td>2</td>
<td>164.9</td>
<td>20</td>
<td>23-May-13</td>
<td>29-May-13</td>
<td>12063</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>9</td>
<td>119</td>
<td>16</td>
<td>7-Jun-13</td>
<td>12-Jun-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>10</td>
<td>62</td>
<td>16</td>
<td>5-Aug-13</td>
<td>10-Aug-13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend of region IDs
- **STST**: GOODS-South Test Orbit (IR in ERS2)
- **SD**: GOODS-South Deep (3x5 transverse)
- **SW**: GOODS-South Wide (2x5 transverse)
- **SYW**: GOODS-South Wide (Y-band + JH filter)
- **SYa**: Western 3x2 of SD (Y-band only)
- **SYb**: Eastern 3x3 of SD (Y-band only)
- **ND**: GOODS-North Deep (3x5 transverse)
- **NWa**: GOODS-North Wide SW (2x5 transverse)
- **NYSW**: GOODS-North Wide SW (Y-band only)
- **NWb**: GOODS-North Wide NE (2x5 transverse)
- **NYNE**: GOODS-North Wide NE (Y-band only)
- **NYa**: Eastern 3x2 of ND (Y-band only)
- **NYb**: Western 3x3 of ND (Y-band only)
- **EGSa**: Initial five-ninths of EGS
- **EGSb**: Remaining four-ninths of EGS
- **UDS**: UDS
- **COS**: COSMOS

v0.5 released
Data obtained

UDS v1.0 released; Within a few weeks: COSMOS v1.0
GOODS-S v1.0
Data Release Plans

- **V0.5:**
 - Updated cumulative stacks within 3 months of each epoch

- **V1.0:**
 - Recalibrated, re-aligned stacks within 6 months of final observations on each field.

- **V2.0:**
 - If recalibration is necessary, aim is to release the final version within 1 year of completion of the program.

- **Catalogs:**
 - Generally, release catalogs at the same time as the first publications using the catalogs.

- **Theory component:**
Upcoming catalog releases next ~6 months

- GALFIT morphologies for UDS, GOODS-S, COSMOS
 - Van der Wel et al. accepted
- UDS multi-wavelength photometry
 - Includes photometric redshifts
- GOODS-S multi-wavelength photometry
- GOODS-S photometric redshifts
- GOODS-S Stellar masses
Photz & SED-fitting

- 13 different techniques
- Photz’s trained & tested on different samples
- Photz’s:
 - Smallest uncertainties using the median from different codes.
- Stellar masses:
 - Truth unknown; different codes reveal the systematic uncertainties.

Uncertainties look good over all z

Pair counts suggest uncertainties are still good fainter than the training set.

Dahlen+ in prep
Mobasher+ in prep
Complementary Observations
Hawk-I Deep Survey
PI Adriano Fontana

208 hour VLT program
Y and Ks bands

5σ AB=27 at Ks
First 1/3 of the data – seeing 0.38"
Spitzer: SEDS/CANDELS

Pl Giovanni Fazio

5σ AB=26.8 at 3.6 μm

Observations finish March 2013
Reprocessing all existing Spitzer data on the fields

![Graph showing 3.6 μm depth vs. area for various fields](image1)

![Map showing SEDS/IRAC UDS Field](image2)
GOODS-N
UDS
GOODS-S
COSMOS

CANDELS+Herschel

The deepest far-IR observations at 100 – 500 μm:
Elbaz et al. (GOODS), Dickinson et al. (COSMOS, UDS)

GOODS-Herschel data products now public @ HeDaM

COSMOS+UDS data newly obtained and are now being analyzed together with CANDELS HST data

CANDELS fields at 160 μm
HST WFC3 region outlined in red
Other observing

- LBT U band (all but GOODS-S)
 - PI’s Grazian, Windhorst
- Multiple targeted spectroscopy programs
 - Keck/DEIMOS (Mobasher)
 - Keck/MOSFIRE (Faber)
 - GEMINI/GMOS (Papovich)
 - VLT/FORS2 (Fontana)
Science Highlights
<table>
<thead>
<tr>
<th></th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A. M. Koekemoer</td>
<td>CANDELS: HST Imaging Data Products and Mosaics</td>
</tr>
<tr>
<td>2</td>
<td>N. A. Grogin</td>
<td>CANDELS: The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey</td>
</tr>
<tr>
<td>3</td>
<td>D. Kocevski</td>
<td>CANDELS: Investigating the AGN-Merger Connection at z~2</td>
</tr>
<tr>
<td>4</td>
<td>J.R. Trump</td>
<td>Emission Line Galaxies at z~2: A Mix of Nuclear Activity and Low-Metallicity Star Formation</td>
</tr>
<tr>
<td>5</td>
<td>A. van der Wel</td>
<td>Extreme Emission Line Galaxies in CANDELS</td>
</tr>
<tr>
<td>6</td>
<td>S. Wuyts</td>
<td>Galaxy Structure and Mode of Star Formation in the SFR-Mass Plane from z2.5 to z0.1</td>
</tr>
<tr>
<td>7</td>
<td>J. S. Kartaltepe</td>
<td>Morphology of Herschel Selected ULIRGs at z~1-3</td>
</tr>
<tr>
<td>7</td>
<td>E. Vanzella</td>
<td>On The Detection Of Ionizing Radiation From Star-Forming Galaxies At Redshift z~3-4</td>
</tr>
<tr>
<td>8</td>
<td>C. Papovich</td>
<td>The Structural Properties and Evolution of Galaxies in a Cluster at z=1.62</td>
</tr>
<tr>
<td>9</td>
<td>S. Finkelstein</td>
<td>Evolution of UV Spectral Slope from z=4-8</td>
</tr>
<tr>
<td>10</td>
<td>S. Rodney</td>
<td>A Type Ia Supernova at Redshift 1.55 in Hubble Space Telescope Infrared Observations from CANDELS</td>
</tr>
<tr>
<td>11</td>
<td>T. Wang</td>
<td>CANDELS: Correlations of SEDs and Morphologies with Star-formation Status for Massive Galaxies at z ~ 2</td>
</tr>
<tr>
<td>12</td>
<td>E. Bell</td>
<td>What turns galaxies off? The morphologies of intermediate-mass and massive quiescent galaxies during the last ten billion years using the CANDELS Survey</td>
</tr>
<tr>
<td>13</td>
<td>S. Wuyts</td>
<td>Smooth(er) Stellar Mass Maps in CANDELS: Constraints on the Longevity of Clumps in High-redshift Star-forming Galaxies</td>
</tr>
<tr>
<td>14</td>
<td>K. I. Caputi</td>
<td>The nature of H-[4.5]>4 galaxies revealed with SEDS and CANDELS</td>
</tr>
<tr>
<td></td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>D. Rosario</td>
<td>X-ray selected AGN Hosts are Similar to Inactive Galaxies out to z=3: Results from CANDELS/CDF-S</td>
</tr>
<tr>
<td>16</td>
<td>A. Grazian</td>
<td>The size-luminosity relation at z=7 in CANDELS and its implication on reionization</td>
</tr>
<tr>
<td>17</td>
<td>A. Cooray</td>
<td>CANDELS: Strong Lensing Galaxies In HST/WFC3 Imaging Data Of UDS AND GOODS-S</td>
</tr>
<tr>
<td>18</td>
<td>J. Lotz</td>
<td>The Assembly of Massive Cluster Galaxies at z=1.62</td>
</tr>
<tr>
<td>19</td>
<td>H. Yan</td>
<td>Luminous and High Stellar Mass Candidate Galaxies at z~8 Discovered in CANDELS</td>
</tr>
<tr>
<td>20</td>
<td>S. Finkelstein</td>
<td>CANDELS: The Contribution of the Observed Galaxy Population to Cosmic Reionization</td>
</tr>
<tr>
<td>21</td>
<td>E. Curtis-Lake</td>
<td>The stellar populations of spectroscopically confirmed z~6 galaxies in the CANDELS UDS/GOODS-S field</td>
</tr>
<tr>
<td>22</td>
<td>R. Bassett</td>
<td>CANDELS Observations of the Color-Morphology Relation at z = 1.6 and its Dependence on Mass and Environment</td>
</tr>
<tr>
<td>23</td>
<td>V. Bruce</td>
<td>Morphologies of Massive Galaxies at 1<z<3 in the CANDELS-UDS Field: The Rise and Fall of Massive Disks</td>
</tr>
<tr>
<td>24</td>
<td>T. Targett</td>
<td>The properties of (sub)millimetre selected galaxies as revealed by CANDELS WFC3/IR imaging in GOODS-South</td>
</tr>
<tr>
<td>25</td>
<td>A. van der Wel</td>
<td>Galfit Structural Parameters of Galaxies from CANDELS</td>
</tr>
<tr>
<td>26</td>
<td>G. Barro</td>
<td>The progenitors of red nuggets at z>2 as seen by CANDELS</td>
</tr>
<tr>
<td></td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Bouwens+12</td>
<td>UV-continuum Slopes at z ~ 4-7 from the HUDF09+ERS+CANDELS Observations: Discovery of a Well-defined UV Color-Magnitude Relationship for z >= 4 Star-forming Galaxies</td>
</tr>
<tr>
<td>2</td>
<td>Oesch+12</td>
<td>Expanded Search for z ~ 10 Galaxies from HUDF09, ERS, and CANDELS Data: Evidence for Accelerated Evolution at z > 8?</td>
</tr>
<tr>
<td>3</td>
<td>Oesch+12</td>
<td>The Bright End of the UV Luminosity Function at z~8: New Constraints from CANDELS Data in GOODS-South</td>
</tr>
<tr>
<td>4</td>
<td>Lerenzoni+12</td>
<td>Constraining the Bright-end of the UV Luminosity Function for z ~ 7 - 9 Galaxies: results from CANDELS/GOODS-South</td>
</tr>
<tr>
<td>5</td>
<td>Tanaka+12</td>
<td>An X-ray Detected Group of Quiescent Early-type Galaxies at z=1.6 in the Chandra Deep Field South</td>
</tr>
<tr>
<td>6</td>
<td>Cameron+12</td>
<td>Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift</td>
</tr>
<tr>
<td>7</td>
<td>DeGraff+12</td>
<td>Early black holes in cosmological simulations: luminosity functions and clustering behaviour</td>
</tr>
<tr>
<td>8</td>
<td>Patel+12</td>
<td>HST/WFC3 Confirmation of the Inside-Out Growth of Massive Galaxies at 0<z<2 and Identification of their Star Forming Progenitors at z~3</td>
</tr>
<tr>
<td>9</td>
<td>Lee+12</td>
<td>A Dual-Narrowband Survey for Hα Emitters at Redshift of 2.2: Demonstration of the Technique and Constraints on the Hα Luminosity Function</td>
</tr>
<tr>
<td>10</td>
<td>Overzier+12</td>
<td>The Millennium Run Observatory: First Light</td>
</tr>
<tr>
<td>11</td>
<td>Szomoru+12</td>
<td>Sizes and Surface Brightness Profiles of Quiescent Galaxies at z ~ 2</td>
</tr>
<tr>
<td>12</td>
<td>Newman+12</td>
<td>Can Minor Merging Account for the Size Growth of Quiescent Galaxies? New Results from the CANDELS Survey</td>
</tr>
<tr>
<td>13</td>
<td>Welikala+12</td>
<td>Pixel-z: Studying Substructure and Stellar Populations in Galaxies out to z~3 using Pixel Colors I. Systematics</td>
</tr>
<tr>
<td>14</td>
<td>Oesch+12</td>
<td>A rest-frame Optical View on z~4 Galaxies I: Color and Age Distributions from Deep IRAC Photometry of the UDF10 and GOODS Surveys</td>
</tr>
</tbody>
</table>
High-z: evolution of UV slopes

High-mass galaxies already metal-rich

Low-mass galaxies growing dust and metals

Finkelstein+ 2012
High-z galaxy sizes

153 z-band drop-out galaxies in six different fields

Physical sizes are *small*, even accounting for surface-brightness selection.

Luminosity function faint-end slope is not as steep as previously estimated.
Improved constraints UV luminosity density at z=6. Observed galaxies can maintain reionization at z=6 if 30% of the ionizing photons escape.

Finkelstein+ 2012

IGM ionized fraction: Scenario where reionization is <~90% complete at z=7 is consistent with WMAP, QSO absorption lines, Ly-A emitters and Lyman-break galaxies.
Co-evolution of galaxies and supermassive black holes: host galaxies of X-ray selected AGN at z~2

Kocevski+ 2012
Most cited CANDELS science paper
Morphologies of X-ray AGN hosts at z~2

AGN hosts are NOT disturbed.

Kocevski+ 2012
Morphologies of X-ray AGN hosts

AGN hosts are mostly spheroids.

Kocevski+ 2012
Morphologies of X-ray AGN hosts

AGN hosts have many disks.

Kocevski+ 2012
Morphologies of X-ray AGN hosts

The lack of disturbances and high frequency of disks challenges the standard merger-driven AGN paradigm.

AGN demographics at $z \sim 2$ look like those at $z \sim 1 \rightarrow$ internally driven BH growth and AGN triggering.

Coming soon: IR-selected AGN
Donley et al. 2013
Bulge fractions

Massive galaxies $M^* > 10^{11} M_\odot$

- Bulges become dominant in massive galaxies at $z \sim 2$
- Bulges are smaller at fixed mass at $z \sim 2$ than today.
- While most passive galaxies are bulge dominated, a few passive galaxies appear to be pure disks.
 - Implications for quenching models?
- *Era of massive disks at $2 < z < 3$*

Bruce+ 2013
Mortlock + in prep
Massive z~2 galaxies: morphology vs. SFR

Passive (24-μm faint) galaxies tend to be compact spheroidals. Star-forming galaxies tend to be more extended and more disk like.

Also, Bell+ 2012: Passive galaxies at z~2 have high Sersic indices:
- Correlation of star-formation with profile shape is much stronger than with stellar mass.

Wang+ 2012
Correlations of color, mass and morphology

- Passive BzK galaxies tend to be more massive and more compact than star-forming BzK galaxies

Lee+ 2013
The Hubble Sequence at $z \sim 2$

Axial Ratio distributions

Massive galaxies $M^* > 10^{11} M_\odot$

- Passive disks (gray) appear to be flat
- Star-forming disks appear to be prolate or triaxial
- Further studies underway measuring larger samples over a wider mass range.

Bruce+ 2013
Van der Wel+ in prep.
Blue and red “nuggets”

Relative space densities evolve

Densities suggest rapid quenching of blue nuggets (< 1 Gyr)

Barro+ 2013
Spatially resolved stellar populations

Redshift 0.5-1.5:
Off-center star-forming clumps generally disappear from stellar mass maps – contribute up to 20% of integrated SFR but <7% to stellar mass.

Wyuts+ 2012
CANDELS/Theory efforts

Semi-Analytic models
- From the same halo merger trees
- Tuned to the same z=0 stellar mass function
- Different codes, different feedback, different dust, different secondary tuning
- Catalog release in 2013

Lu+ in preparation
High-resolution AMR hydrodynamical simulations
• Drawn from cosmological simulations
• Including dusty radiative transfer (SUNRISE)
• “CANDELized” to HST resolution
• 30 galaxies -> 60+ galaxies
• $M_{\text{halo}} \ 10^{11}-10^{13}$ at $z=1$

SPH zoom simulations
• Variety of feedback recipes
• Davé+ in prep
CANDELS/Theory efforts:
How do galaxies assemble their mass?

Assembly histories extracted from the HART simulations
Tweed+ in prep
Mandelkir+ in prep

Assembly histories reconstructed from (pre-CANDELS) observations
Behroozi+ 2013
Much more in-situ star-formation
CANDELS UV observations

- Observations in GOODS-N during the day side of CVZ orbits
 - Scattered-light avoidance strategy is working well
- 10 epochs March 2013 – August 2014
- Challenging in many ways:
 - Scheduling to make the most of CVZ
 - CTE losses forced a mid-course change of observing strategy
 - Loss of depth; challenging calibration

BIG Thanks to Tricia Royle and the scheduling team!
UV Science goals

- **Morphology**
 - photometric and morphological properties of star-forming clumps
 - spatial differentiation of star formation activity and older stellar populations (e.g., internal color dispersion)
 - Size evolution of passive galaxies

- **Star-Formation in LBGs**
 - Robust selection of dropouts at \(z=2-3 \)
 - Compare UV and optical tracers of star-formation

- **Lyman Continuum Escape Fraction**
 - Resolved LyC if detected;
 - stacking for robust limit if not
<table>
<thead>
<tr>
<th>Field</th>
<th>UV Band(s)</th>
<th>Area (arc')</th>
<th>Depth (orbits)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANDELS GOODS-N (day side of deep survey)</td>
<td>F275W</td>
<td>70</td>
<td>about 4</td>
<td>Finish Aug 2013 Binning/post-flash/CTE</td>
</tr>
<tr>
<td>UVUDF</td>
<td>F225W, F275W, F336W</td>
<td>7</td>
<td>30</td>
<td>Data obtained. Binning/post-flash/CTE</td>
</tr>
<tr>
<td>ERS (GOODS-S)</td>
<td>F225W, F275W, F336W</td>
<td>40</td>
<td>2</td>
<td>Mosaics soon Different Y-band</td>
</tr>
</tbody>
</table>

Figure from S. Finkelstein

Figure from Grogin et al. (2011)
Mid-course correction

- Switched from 2x2 binned to unbinned with post-flash (for epochs 4-10).
 - CTE losses were much worse than anticipated
 - So far, unable reach theoretical noise limit of 2x2 binned observations
 - Mostly limited by warm pixels
 - Post flash gives us a formal noise penalty of a factor of ~2, but reduces systematic uncertainties by some difficult-to-estimate factor

- So we opted to switch from a mode that isn’t working as well as expected to a mode that isn’t yet calibrated, but holds more promise.

- Put all remaining orbits into F275W, dropping F336W

BIG Thanks to John Mackenty, Jay Anderson & the WFC3 team!
UV Calibration wish list

• For binned mode, darks with the warm pixels included

• For post-flash mode:
 • High-S/N post-flash background image
 • Post-flash background is not uniform
 • Acid-test of post-flash CTE-corrected galaxy photometry:
 • 2-orbit repeat of a field in the ERS in F275W
 • ERS was observed just after launch.
CANDELS Outreach

- Blog
 - 73 posts
 - 3 per week
 - 24000 views
- Teacher workshop
- Iphone App
 - coming soon
- Galaxy Zoo
 - 500,000 classifications in the first week
Budget cap impacts

• Funded at 72% of our 2011 request

• Cap in 2011 to 76% had the largest impact:
 • Ground-based observing
 • averaging ~4 runs per semester
 • now virtually unsupported by CANDELS funds
 • VAO coordination unsupported
 • Galaxy Zoo science not explicitly supported
 • Shelved:
 • Development of more advanced clump finders
 • Innovative methods for photometric redshifts
 • Severely reduced support for:
 • Extragalactic Background Light measurements
 • Bar fraction evolution
 • V2.0 data release at risk
Budget cap impacts

• Postdocs were hired in 2010 based on projection of original budget – which included a 5-year plan.

• Consequences:
 • Postdoc appointments are now 2.5 instead of 3 years, which necessitates applying for jobs this fall.
 • Timesharing with other grants

• Lesson for future large programs: Stable funding up front will make the teams more productive.
 • Avoid inordinate amounts of time spent preparing and revising budgets
Summary

• CANDELS is going well overall
 • Productive and enthusiastic team working well together.

• Data are supporting a wide variety of science within the collaboration and the greater community

• Significant public outreach & theory components of the project

• For the UV: trying to make the most of what the instrument can offer