All STIS data products are FITS files. Images and two-dimensional spectroscopic data are stored in FITS image extension files, which can be directly manipulated, without conversion, in the
IRAF/STSDAS environment. These FITS image extension files allow an associated set of STIS science exposures, processed through calibration as a single unit, to be packaged into a single file. Accessing the images in the FITS image extension files in
IRAF follows a simple convention explained in detail in Chapter 2 of the
Introduction to the HST Data Handbooks. The
catfits task can be used to list the complete set of the primary and extension headers of the data files.
Tabular STIS information, such as extracted one-dimensional spectra or the TIME-TAG mode event series, are stored as three-dimensional FITS binary tables. The tables can be accessed directly in the
IRAF/STSDAS environment using tasks in the
tables.ttools package as described in Chapter 2 and Chapter 3 of
Introduction to the HST Data Handbooks.
Figure 2.2 illustrates the structure of a STIS FITS image extension file, which contains:
All uncalibrated and calibrated ACCUM mode science data (with the exception of the extracted one-dimensional spectra and TIME-TAG data, see below) are stored in FITS image extension files with the particular format shown in
Figure 2.2. Each STIS readout generates three FITS images or extensions (SCI, ERR and DQ) as explained below:
The error arrays and data quality values are described in more detail in Section 2.5. Each of these extensions can contain one of several different data types, including images, binary tables and ASCII text tables. The value of the
XTENSION keyword in the extension’s header identifies the type of data the extension contains; the value of this keyword may be determined using the
tables tasks
catfits or
thedit.
Acquisition Images: Almost all STIS spectroscopic science exposures will have been preceded by an acquisition (and possibly an acquisition/peakup) exposure to place the target in the slit. Keywords in the header of spectroscopic data identify the dataset name of the acquisition (in the
ACQNAME keyword).
An acquisition exposure produces a raw data file (rootname_raw.fits) containing three science image extension corresponding to the three stages of the acquisition procedure:
|
•
|
[SCI,1] is a subarray image (100 × 100 pixels) for point source acquisitions; larger for diffuse acquisitions) of the target area obtained after the initial blind pointing.
|
Acquisition/Peakup Images: An acquisition/peakup exposure will produce a single raw data file for a spiral search peakup, and one for each linear search peakup; that is, if you have performed a peakup that requires SEARCH=LINEARAXIS1 and SEARCH=LINEARAXIS2 scans, then two datasets will be produced: one for each scan. Keywords
ACQPEAK1 and
ACQPEAK2 in the header of STIS data identify the dataset name of the acquisition/peakup images. The _raw data file produced for an ACQ/PEAK exposure contains one science image extension:
To examine the flux values of the individual steps in the ACQ/PEAK, relative to the lowest flux, which has been set to 0, list the entries (using the
listpix task) of the fourth extension, i.e., rootname_raw.fits[4]. Extensions [2] and [3] are the unpopulated ERR and DQ arrays that accompany extension [1]; recall that [1] = [SCI,1].
Direct and Spectral Imaging Data: The intermediate calibrated output product for CCD direct and spectral imaging data is the _flt or _crj file, and the intermediate calibrated product for MAMA data is the _flt or _sfl file, depending on whether the file contains single or multiple imsets (see
Table 2.2). The units of the data in these files are counts per pixel. The conversion of the counts to flux (or magnitude) is explained in
Section 5.3.1.
The _x2d and _sx2 files hold the geometric distortion corrected imaging data or the flux and wavelength calibrated two-dimensional spectra for long slit first order observations. These are stored as FITS images, as are the raw and calibrated imaging data. The units of the data in the direct images and two dimensional spectra are counts sec
-1 and ergs sec
-1 cm
-2 Å
-1 arcsec
-2, respectively. The procedure to derive flux information from these data is described in
Section 5.3.1 and
Section 5.4.1, respectively. Discussion of the one-dimensional extracted spectra is presented in
Section 2.3.2 and
Section 5.5.
All the TIME-TAG and one-dimensional STIS spectra are stored in binary tables, as described below.
Time-Tag: TIME-TAG mode is used for high time resolution spectroscopy and imaging in the UV (with the MAMA detectors only). TIME-TAG event data (rootname_tag.fits) are contained in a binary table extension.
Figure 2.3 shows the format of TIME-TAG tables. The first extension contains the events table, in which each row of the table corresponds to a single event in the data stream and the columns of the table contain scalar quantities that describe the event, as shown in
Table 2.3. The second extension contains the good time intervals information, where an uninterrupted period of time is considered as one good time interval. Interruptions in the data taking due to memory overflow or corrupted fine times could result in more than one GTI (see
STIS ISR 2000-02).
The STIS pipeline collapses a TIME-TAG event series into a single time-integrated image and processes it as if it were an ACCUM mode image. Outside of the pipeline the raw TIME-TAG event stream can be manipulated to produce two-dimensional images which are integrated over user-specified times or manipulated directly (see
Section 5.6).
One-Dimensional Extracted Spectra: The STIS pipeline produces aperture extracted one-dimensional spectra and stores them in binary tables (rootname_x1d.fits or rootname_sx1.fits).
Figure 2.4 shows the format of the 1-D extracted spectra table. For a single first order spectroscopic observation, the calibrated spectrum is stored in the first row of the first extension of the _x1d file. Each column of the table contains a particular quantity, such as WAVELENGTH or FLUX.
Table 2.4 shows the contents of the different columns in a STIS extracted spectrum table. Each table cell can contain either a scalar value or an array of values. The SPORDER column value is equal to 1 for first order spectral data. There will be a separate table extension for each associated exposure in an associated set. For example, if you specified Number_of_Iterations=2 in your Phase II proposal, you will find the extracted spectrum from the second exposure in the second table extension. The _sx2 file, on the other hand, contains one single spectra that is derived from the flat-fielded, co-added, individual repeat observations file rootname_sfl.fits.
For echelle data, each spectral order is extracted from the image and a fully calibrated spectrum of that order is stored in a separate row of the first extension of the binary table. The number of orders (and ultimately the number of rows in the table) in the SPORDER column in this case will be anywhere between 24 and 70 depending on the echelle grating being used.