Space Telescope Science Institute
STIS Instrument Handbook
help@stsci.edu
Table of Contents Previous Next Index Print


Space Telescope Imaging Spectrograph Instrument Handbook for Cycle 22 > Chapter 3: STIS Capabilities, Design, Operations, and Observations > 3.1 Instrument Capabilities

3.1
STIS uses two-dimensional detectors operating from the ultraviolet (UV) to the near-infrared (NIR). First-order gratings cover the full spectral range and are designed for spatially resolved spectroscopy using a long slit. The echelle gratings, available only in the UV are designed to maximize the spectral coverage in single observations of point sources. The STIS Flight Software supports onboard target acquisitions and peakups to place targets on slits. The STIS optics and detectors have been designed to exploit HST’s high spatial resolution.
STIS can be used to obtain:
Echelle spectroscopy at medium to high spectral resolution (R ~ 30,000–114,0001), covering a broad simultaneous spectral range (Δλ ~ 800 or 200 ┼, respectively) in the UV(1150–3100 ┼).
In addition to these two prime capabilities, STIS also provides:
Imaging capability using the solar-blind FUV-MAMA detector (1150–1700 ┼), the solar-insensitive NUV-MAMA detector (1150–3100 ┼), and the optical CCD (2000–10,300 ┼), through a small complement of narrow-band and broad-band filters.
High-time-resolution (Δτ = 125 microseconds) imaging and spectroscopy in the UV (1150–3100 ┼) and moderate-time-resolution (Δτ ~20 şseconds) CCD imaging and spectroscopy in the NUV, optical, and NIR (2000–10,300 ┼).
Coronagraphic imaging in the near-ultraviolet (NUV), optical, and NIR (2000–10,300 ┼) and bar-occulted spectroscopy over the entire spectral range (1150–10,300 ┼).
Table 4.1 and Table 5.1 provide a full list of gratings for spectroscopy and filters for imaging.
STIS is a versatile instrument that can be applied to a broad range of scientific programs. Studies of the dynamics of galactic nuclei and the kinematics of active galaxies and diffuse galactic nebulae benefit from the ability to obtain spatially resolved spectroscopy over a 50-arcsecond long slit and from the high quantum efficiency in the optical provided by the CCD. The wide wavelength coverage of STIS facilitates line-ratio studies; for instance, the low-resolution first-order gratings span the range 1150–10,300 ┼ in just four exposures. Slitless spectroscopy provides emission line images of astronomical objects, and coronagraphic imaging and spectroscopy can reveal the nature of extended gaseous regions surrounding bright continuum sources.
1
R ~ 200,000 is possible under some circumstances with the 0.1x0.03 aperture; see Section 12.6


Space Telescope Imaging Spectrograph Instrument Handbook for Cycle 22 > Chapter 3: STIS Capabilities, Design, Operations, and Observations > 3.1 Instrument Capabilities

Table of Contents Previous Next Index Print