Overview

- ACS Lecture 1
 - Science drivers
 - Optics design
 - Detectors
 - Filters

- ACS Lecture 2
 - ACS thermal design
 - ACS science operations
 - Description of IDT science program
 - Science Discovery Efficiency
Design Goals

• Deep, survey imaging
 – I band optimized
 – Wide field
 – Discovery Efficiency (DW) = QE x Area
 – ACS Discovery Efficiency = 10 x WFPC2

• High resolution imaging
 – Near-UV optimized (200-400 nm)
 – Optimal sampling of PSF
 – High precision photometry
Design Goals

- **FUV Imaging**
 - Solar Blind Imaging
 - Low R spectroscopy
 - Backup FUV imaging

- **Stellar Coronograph**
 - high contrast imaging
 - high spatial resolution
ACS Science Team

Principal Investigator
H. Ford
JHU

Deputy Principal Investigator
G. Illingworth
UC Lick

Project Scientist
G. Hartig
STScI

M. Rafal
STScI

F. Bartko
JILA

T. Broadhurst
UC Berkeley

R. Brown
STScI

C. Burrows
STScI

E. Cheng
GSFC

M. Clampin
STScI

J. Crocker
JHU/Ball

P. Feldman
JHU

M. Franx
Leiden

D. Golimowksi
JHU

R. Kimble
GSFC

M. Lesser
Steward

G. Miley
Leiden

M. Postman
STScI

P. Rosati
ESO

W. Sparks
STScI

Z. Tsvetanov
JHU

R. White
STScI

ACS Technical Officer
P. Sullivan
GSFC

ACS Program Manager
P. Volmer
Ball Aerospace

ACS Systems Engineer
R. Woodruff
Ball Aerospace

Mark Clampin
Wide Field Channel (WFC)
- Three mirror optical design
- Silver mirror coatings
- Optimized for I band imaging (NIR)
- 202” x 202” field of view
- 0.05”/pixel plate scale
- Two 2048 x 4096, 15 µm pixel CCDs
- Spectral response: 380 nm - 1050nm
WFC Optical Design
Mirror Coatings

WFC is IR optimized!

Degradation of witness sample (4 years)
HRC/SBC Specifications

- High Resolution Channel (HRC)
 - Three mirror design, MgF$_2$ on Al
 - 29" x 26" field of view
 - 0.026"/pixel plate scale
 - critical sampling of PSF at 500 nm
 - Spectral response: 200nm 1050 nm
 - 1024 x 1024 21 µm/pixel near-UV CCD
 - Stellar Coronograph mode
HRC/SBC Specifications

- Solar Blind Channel (SBC)
 - Two mirror design, MgF₂ on Al
 - 35" x 31" field of view
 - 0.032"/pixel plate scale
 - 1024 x 1024 CsI 25 µm/pixel MAMA
HRC/SBC Optical Design
Coronograph Design

Advanced Camera for Surveys

Mark Clampin
Coronograph Design

Occulting Masks

- 1.8” diameter spot
- 3.0” diameter spot

N.B. tilted optics
Coronograph Performance

Advanced Camera for Surveys

Mark Clampin
Post SM3B: HST Focal Plane
Imaging Performance

- WFC and HRC optics meet specification
 - WFC: 77% encircled energy in 0.25 arcsec
 - HRC: 87% encircled energy in 0.25 arcsec
- WFC elongated by 8%
- HRC/SBC elongated by 11%
ACS Optical Bench
ACS Optical Bench
Detector Requirements

- **CCD Requirements**
 - High QE (Discovery Efficiency goal of 10)
 - Large WFC format: 4096x4096 pixels
 - Overall WFC system noise goal: <4.6 e-RMS
 - Overall HRC system noise: <3.5 e-RMS
 - Foundry procurement for WFC
 - STIS 1kx1k with Steward NUV coating for HRC

- **SBC MAMA**: baseline STIS Flight spare
Detector Architecture

- **WFC CCDs fabricated by SITe**
 - thinned, backside-illuminated
 - Multi-phase pinned (MPP)
 - low dark current
 - radiation protection

- **Backside passivation process**
 - WFC: SITe processed
 - SITe ion implant + AR coating
 - HRC: SITe + UA processed
 - Catalytic process + AR coating
WFC CCD Quantum Efficiency

Instrument throughput vs. Wavelength (nm)

- WFPC2
- WFC

Mark Clampin
HRC Fringing

Issue for:
- Grism
- IR ramp
WFC Full Well

Advanced Camera for Surveys

Mark Clampin
WFC CCD Performance

<table>
<thead>
<tr>
<th>Device</th>
<th>Lot</th>
<th>CTE Parallel</th>
<th>CTE Serial</th>
<th>R_n (e^-)</th>
<th>QE 400 nm</th>
<th>QE 600 nm</th>
<th>QE 800 nm</th>
<th>Dark 400 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>8242MBR10-01</td>
<td>Lot 7b(a)</td>
<td>0.999994</td>
<td>0.999999</td>
<td>6.0</td>
<td>65%</td>
<td>74%</td>
<td>62%</td>
<td>5.0</td>
</tr>
<tr>
<td>3μm mini-chan</td>
<td>Lot 7b(b)</td>
<td>0.999996</td>
<td>0.999999</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8242MBR10-02</td>
<td>Lot 7b(a)</td>
<td>0.999995</td>
<td>0.999998</td>
<td>7.5</td>
<td>66%</td>
<td>76%</td>
<td>60%</td>
<td>3.5</td>
</tr>
<tr>
<td>3μm mini-chan</td>
<td>Lot 7b(b)</td>
<td>0.999995</td>
<td>0.999999</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9053MABR05-01</td>
<td>Lot 8(a)</td>
<td>0.999998</td>
<td>0.999999</td>
<td>7.7</td>
<td>71%</td>
<td>78%</td>
<td>58%</td>
<td>3.1</td>
</tr>
<tr>
<td>3μm mini-chan</td>
<td>Lot 8(b)</td>
<td>0.999999</td>
<td>0.999999</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9053MABR06-01</td>
<td>Lot 8(a)</td>
<td>0.999999</td>
<td>0.999999</td>
<td>7.2</td>
<td>70%</td>
<td>81%</td>
<td>61%</td>
<td>4.4</td>
</tr>
<tr>
<td>3μm mini-chan</td>
<td>Lot 8(b)</td>
<td>0.999997</td>
<td>0.999998</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Charge Transfer Efficiency

Advanced Camera for Surveys

Mark Clampin
Radiation Damage

- Minimize parallel readouts

- Mini-channel
 - ~5k-10ke⁻ deep channel inside buried channel
 - reduces trap cross-section at low signal levels
Long wavelength halo

CCD Package Cross-section

- Backside illuminated, thinned CCD (~15 µm)
- Al metal layer reflects long-λ photons
- Soda glass header 2000 µm
- Header metalization

Mark Clampin
Long wavelength halo

Measured flux in the halo

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>590</td>
<td>1.2</td>
</tr>
<tr>
<td>780</td>
<td>3.9</td>
</tr>
<tr>
<td>900</td>
<td>15</td>
</tr>
<tr>
<td>1030</td>
<td>38</td>
</tr>
</tbody>
</table>
HRC CCD Quantum Efficiency

Instrument throughput vs. Wavelength (nm)

- WFPC2
- HRC

Mark Clampin
HRC CCD Performance

<table>
<thead>
<tr>
<th>Quantum Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>@250 nm</td>
</tr>
<tr>
<td>@400 nm</td>
</tr>
<tr>
<td>@600 nm</td>
</tr>
<tr>
<td>@800 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Read Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amp. A</td>
</tr>
<tr>
<td>Amp. B</td>
</tr>
<tr>
<td>Amp. C</td>
</tr>
<tr>
<td>Amp. D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>150000 e⁻ RMS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dark Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 e⁻/pixel/hr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel CTE</td>
</tr>
<tr>
<td>Serial CTE</td>
</tr>
</tbody>
</table>
HRC CCD Cosmetics

- 250 nm flat field

- 800 nm flat field
CCD Packaging

- WFC dewar employs a double shell
 - thermal goal of CCD temperature = -85°C
 - internal surfaces anti-reflection coated

- HRC dewar employs a single shell design
 - thermal goal of CCD temperature = -83°C
 - internal surfaces anti-reflection coated

- Outer dewar windows are warm
 - No degradation of UV/Visible performance
WFC CCD Dewar

CCD header assembly

Inner dewar shell

WFC Dewar Schematic
Selected STIS flight spare

- CsI photocathode
- STIS MAMA performance
 - except dark = 10^{-4} c/s/pixel
 - Removed time-tag
 - 1024x1024 format only
Filter Design Goals

- **Broadband filters**
 - link to WFPC2 photometric system
 - link to ground-based surveys
 - optimize for deep imaging programs

- **Narrowband filters**
 - core filter set with full WFC field of view
 - moderate field of view narrowband imaging at all λ

- **Slitless spectroscopy**
 - redshifts for deep imaging surveys

- **Polarimetry**
 - optimized for visible/NUV
Broadband Filters

- Deep imaging: I
 - Sloane Digital Sky Survey (SDSS)
Broadband Filters

- **Deep imaging: I**
 - Sloane Digital Sky Survey (SDSS)

- **Deep Imaging: II**
 - Wide-Y, I
Deep Imaging Filters
Broadband Filters

- Deep imaging: I
 - Sloane Digital Sky Survey (SDSS)
- Deep Imaging: II
 - Wide-V, I
- Photometry
 - B, V, R & I
BVRI Filter Set

Advanced Camera for Surveys

Transmittance

Wavelength (nm)

F814W
F625W
F555W
F435W

Mark Clampin
- Broadband Filters (FOV)
 - Deep imaging: I
 - Sloane Digital Sky Survey (SDSS)
 - Deep Imaging: II
 - Wide-V, I
 - Photometry
 - B, V, R & I
- Near-UV Imaging (FOV)
 - High throughput + low red leak
 - F220W, F250W, HRC-U, & WFC U
Near-UV Filter Set
Narrowband Filters

- Ramp Filters
 - FOV ~40”x70”
 - 2% narrowband imaging
 - [OII]: 371 nm - 482 nm (HRC: 371 nm - 405 nm)
 - [OIII]: 482 nm - 627 nm (HRC: 482 nm - 527 nm)
 - Hα: 627 nm - 816 nm (HRC: 627 nm - 685 nm)
 - I band: 816 nm - 1061 nm
 - 9% medium bandpass filter
 - Medium Band - 9% 381 nm - 1071 nm
 (HRC: 381 nm - 537 nm, 757 nm - 1071 nm)
Ramp Filters

Diagram shows looking through filter towards detector

Angular scales are approximate since field has non-linear distortion when projected on filters or detector

WFC format

Min. wavelength

Max. wavelength

Filter wheel rotation

HRC format

WFC 100 arcsec

HRC 25 arcsec

25 mm on filter

Mark Clampin
Narrowband Filters

- WFC (full 202”x202” FOV)
 - Hα: 1% bandpass
 - [Oiii]: 1% bandpass
 - [Nii]: 0.5% bandpass
 - Continuum: 10% bandpass

- HRC
 - NeV: 2% bandpass
 - Methane: 2% bandpass
Dispersers/Polarizers

- **Gris:**
 - $R \approx 100$
 - WFC & HRC

- **NUV Prism:**
 - $R \approx 100$

- **FUV Prisms**
 - LiF: $R \approx 100$
 - CaF$_2$: $R \approx 100$
Polarizers

• 3 polarization angles
 – 0°, 60°, 120°

• UV (HRC)
 – F344N, F435W, F330W,
 – F250W, F220W

• Visible (WFC)
 – F475W, F555W, F625W,
 – F606W, F658N, F502N,
 – F550M
Filter Summary

<table>
<thead>
<tr>
<th>#</th>
<th>Filter Name</th>
<th>Filter Description</th>
<th>Camera</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F555W</td>
<td>Johnson V</td>
<td>● ● ●</td>
</tr>
<tr>
<td>2</td>
<td>F775W</td>
<td>SDSS i</td>
<td>● ● ●</td>
</tr>
<tr>
<td>3</td>
<td>F625W</td>
<td>SDSS r</td>
<td>● ● ●</td>
</tr>
<tr>
<td>4</td>
<td>F658N</td>
<td>Hα</td>
<td>● ● ●</td>
</tr>
<tr>
<td>5</td>
<td>F850LP</td>
<td>SDSS z</td>
<td>● ● ●</td>
</tr>
<tr>
<td>6</td>
<td>Clear</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>7</td>
<td>POL0UV</td>
<td>UV Polarizer 0°</td>
<td>● ● ●</td>
</tr>
<tr>
<td>8</td>
<td>POL60UV</td>
<td>UV Polarizer 60°</td>
<td>● ● ●</td>
</tr>
<tr>
<td>9</td>
<td>POL120UV</td>
<td>UV Polarizer 120°</td>
<td>● ● ●</td>
</tr>
<tr>
<td>10</td>
<td>F892N</td>
<td>Methane</td>
<td>● ● ●</td>
</tr>
<tr>
<td>11</td>
<td>F606W</td>
<td>Broad V</td>
<td>● ● ●</td>
</tr>
<tr>
<td>12</td>
<td>F502N</td>
<td>[OIII]</td>
<td>● ● ●</td>
</tr>
<tr>
<td>13</td>
<td>G800L</td>
<td>Grism</td>
<td>● ● ●</td>
</tr>
<tr>
<td>14</td>
<td>F550M</td>
<td>Narrow V</td>
<td>● ● ●</td>
</tr>
<tr>
<td>15</td>
<td>F475W</td>
<td>SDSS g</td>
<td>● ● ●</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Filter Name</th>
<th>Filter Description</th>
<th>Camera</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clear</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>2</td>
<td>F660N</td>
<td>[NII]</td>
<td>● ● ●</td>
</tr>
<tr>
<td>3</td>
<td>F814W</td>
<td>Johnson I</td>
<td>● ● ●</td>
</tr>
<tr>
<td>4m</td>
<td>FR388N</td>
<td>[OII] Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>4i</td>
<td>FR423N</td>
<td>[OII] Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>4o</td>
<td>FR462N</td>
<td>[OII] Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>5</td>
<td>F435W</td>
<td>Johnson B</td>
<td>● ● ●</td>
</tr>
<tr>
<td>6m</td>
<td>FR656N</td>
<td>Hα Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>6i</td>
<td>FR716N</td>
<td>Hα Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>6o</td>
<td>FR782N</td>
<td>Hα Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>7</td>
<td>Clear</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>8</td>
<td>POL0V</td>
<td>Visible Polarizer 0°</td>
<td>● ● ●</td>
</tr>
<tr>
<td>9</td>
<td>F330W</td>
<td>HRC u</td>
<td>● ● ●</td>
</tr>
<tr>
<td>10</td>
<td>POL60V</td>
<td>Visible Polarizer 60°</td>
<td>● ● ●</td>
</tr>
<tr>
<td>11</td>
<td>F250W</td>
<td>Near-UV filter</td>
<td>● ● ●</td>
</tr>
<tr>
<td>12</td>
<td>POL120V</td>
<td>Visible Polarizer 120°</td>
<td>● ● ●</td>
</tr>
<tr>
<td>13</td>
<td>G200L</td>
<td>HRC Prism</td>
<td>● ● ●</td>
</tr>
<tr>
<td>14</td>
<td>F344N</td>
<td>NeV</td>
<td>● ● ●</td>
</tr>
<tr>
<td>15</td>
<td>F220M</td>
<td>Near-UV filter</td>
<td>● ● ●</td>
</tr>
<tr>
<td>16m</td>
<td>FR914M</td>
<td>Broadband Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>16i</td>
<td>FR853N</td>
<td>IR Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>16o</td>
<td>FR931N</td>
<td>IR Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>17m</td>
<td>F647M</td>
<td>Broad Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>17i</td>
<td>F459M</td>
<td>Broadband Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>17o</td>
<td>F1016N</td>
<td>IR Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>18m</td>
<td>FR555N</td>
<td>[OIII] Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>18i</td>
<td>FR551N</td>
<td>[OIII] Ramp</td>
<td>● ● ●</td>
</tr>
<tr>
<td>18o</td>
<td>FR601N</td>
<td>[OIII] Ramp</td>
<td>● ● ●</td>
</tr>
</tbody>
</table>

- WFC
- HRC

Mark Clampin
SBC Filter Wheel

Aperture stops for MAMA bright object protection strategy

Mark Clampin
SBC Filter Set
WFC Throughput

Throughput (%)

Wavelength (nm)

Advanced Camera for Surveys

Mark Clampin
HRC Throughput

Throughput (%)

Wavelength (nm)

- WFPC2
- STIS
- HRC

Advanced Camera for Surveys

Mark Clampin
SBC Throughput

- Science driver is Dark rate

Throughput (%)

Wavelength (nm)

STIS
ACS-SBC

Mark Clampin