Phase II Proposal Processing

Denise Taylor
Observation Planning Branch
Program Coordinators (PCs) implement Phase IIs:
Observation Planning Branch (ODM/OPB)

• **Tony Roman:** Lead Program Coordinator
 PC Calibration Manager, PC SMOV Manager, Solar System Proposals
• **Andy Lubenow:** Senior Program Coordinator
 Solar System Proposals
• **Ray Lucas:** Senior Program Coordinator
 APT Support
• **Alison Vick:** Senior Program Coordinator
 ACS calibrations, comet observations, LRP
• **Beth Perriello:** Program Coordinator II
 NICMOS calibrations, ACS GTOs, inter-observatory coordinations
• **Tricia Royle:** Program Coordinator II
 BOA manager, Hubble Heritage programs, UDF, LRP
• **Bill Januszewski:** Program Coordinator II
 WFPC2 calibrations, COS GTOs
• **Gala Soutchkova:** Program Coordinator II
 STIS calibrations, pure parallels
• **Denise Taylor:** Branch Head
 FGS calibrations, FGS proposals

Also:

• **Ian Jordan (ODM/SMSB)**
• **Karla Peterson (ESS/APSB)**
PCs are assigned to specific proposals until all observations are executed.

- PCs work with Principle Investigators (PI) and other operational staff (ODM, INS) to develop a technically feasible, scientifically valid observing plan.
- Work begins before Phase II deadline and continues until all observations in a proposal are successfully executed.
- A single PC may have 20-60 active proposals at a given time, spanning more than one observing cycle, and containing a mixture of General Observer (GO), Guaranteed Time Observer (GTO), Snapshot (SNAP), Director’s Discretionary (DD), calibration (CAL) and/or Servicing Mission Orbital Verification (SMOV) proposals.
Proposal Processing

- PI develops and submits Phase II using APT within 6 weeks of notification of acceptance.
- PC loads Phase II into Proposal Library (PLIB) and begins preliminary ground system processing.
- Phase II is run through Verification: must meet TAC approved orbit allocation; must use same targets and instrument configurations as were approved by TAC; must conform to any TAC-mandated changes; must not duplicate other observations. Major differences (# orbits, instrument usage, or duplications) must be reviewed by the Telescope Time Review Board (TTRB). Minor differences (target changes or filter changes) are reviewed by an Instrument Scientist.
General Processing Steps

• PLIB and the Preprocessor: store the proposal (every version!) and check for syntax errors, illegal instrument configurations; create input files for Trans
• Transformation (TRANS or TransVerse or TV): convert proposal into database insertion files containing visit structure information (# orbits, visit #, exposure times, instrument and filters used, targets observed).
• Assist Database: proposal processing and status tracking.
• Proposal Management Database (PMDB): observation information used by schedulers.
• New Guide Star System (NGSS): guide star searches and bright object alerts.
• Spike: scheduling constraints.
• Science Planning and Scheduling System (SPSS): combines proposal information, guide star information, spacecraft constraints, and instrument management for onboard execution.
<table>
<thead>
<tr>
<th>ID:</th>
<th>9406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program:</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>Targets:</td>
<td>1 2 3</td>
</tr>
<tr>
<td>Visits:</td>
<td>01 02 03</td>
</tr>
<tr>
<td>Obsets:</td>
<td>Obssets in Default Visits</td>
</tr>
<tr>
<td>Links:</td>
<td>L0940601</td>
</tr>
</tbody>
</table>

- Transformation ☐ Generate Links AF ☐ MOSS ☐ PMDB Load ☐ Guide Star Request ☐ Spike ☐ Visit Update

- Transformation Options
- MOSS Options
- PMDB Load Options
- Guide Star Request Options
- Visit Update Options

- Verbose ☐ Meter ☐
Processing Steps (continued)

• Confirmation Charts: images for target coordinate confirmation.
• Moving Object Selection System (MOSS): for Solar System targets only – calculates viewing constraints and orbital information of target so SPSS can determine tracking parameters.
• Parallel Observation Matching System (POMS): generates pure parallel science observations from special proposals.
• Instrument reviews by INS: on all proposals (except calibrations).
• Plan windows produced by LRP: needed for planning analysis.
• Galley proof approved by PI.
• Observations become ready for flight.
Program Information for 9879 – **GO**

(as of Fri Oct 03 10:31:08 EDT 2003)

Principal Investigator: George Benedict
PI Institution: University of Texas at Austin
PI and Co-1 Address Information

Title: An Astrometric Calibration of the Cepheid Period-Luminosity Relation

Program Status: Implementation

Program Coordinator: Denise Taylor (dctaylor@stsci.edu) 410–338–4824

Program Contents

- Phase 2 File
- Formatted Listing
- Target Confirmation Charts (answers to frequently asked questions)
- HST Archive Information (calibration proposals not included)

This program is currently allocated 60 orbits.

Visit Status Information

[Search](http://www.stsci.edu/cgi-bin/get-prt) Daily Status Reports for Program 9879
Formatted Phase 2

Visit: 01

Visit Priority: <none>

Visit Requirements: POS MODE FIRE SCHED 80% ORIENT 100.0D 70.118.0D BETWEEN 13-SEP-2003 00:00:00 AND 15-SEP-2003 00:00:00

On Hold Comments: <none>

Additional Comments: TVUL

Exposures

<table>
<thead>
<tr>
<th>Exposure Number</th>
<th>Target Name</th>
<th>Instrument</th>
<th>Oper. Mode</th>
<th>Aper</th>
<th>Spectral</th>
<th>Central</th>
<th>Optional Parameters</th>
<th>Num</th>
<th>Time</th>
<th>Special Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TVUL</td>
<td>FGS</td>
<td>TRANS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td>STEP-SIZE=1, SMAWS=10</td>
<td>1</td>
<td>375 s</td>
<td>SEQ 1-17 NON-INT</td>
</tr>
<tr>
<td>2</td>
<td>TVUL</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 1</td>
</tr>
<tr>
<td>3</td>
<td>TV-2</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 2</td>
</tr>
<tr>
<td>4</td>
<td>TV-2</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 2</td>
</tr>
<tr>
<td>5</td>
<td>TV-4</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 2</td>
</tr>
<tr>
<td>6</td>
<td>TV-5</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 2</td>
</tr>
<tr>
<td>7</td>
<td>TV-6</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 2</td>
</tr>
<tr>
<td>8</td>
<td>TV-7</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 2</td>
</tr>
<tr>
<td>9</td>
<td>TV-8</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 2</td>
</tr>
<tr>
<td>10</td>
<td>TVUL</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 2</td>
</tr>
<tr>
<td>11</td>
<td>TV-2</td>
<td>FGS</td>
<td>POS</td>
<td>1</td>
<td>FSTD</td>
<td></td>
<td></td>
<td>1</td>
<td>20 s</td>
<td>SAME POS AS 2</td>
</tr>
</tbody>
</table>
Visit: 19
Status: Executed
Data Status: Archived
Configs: FGS

Visit: 20
Status: Scheduling
Configs: FGS
Start Time: Oct 11 2003 20:03:00 UT

Visit: 50
Status: Scheduling
Targets: FF–2 FF–3 FF–4 FF–5 FF–6 FF–7 FFAGL
Configs: FGS
Start Time: Oct 7 2003 01:38:04 UT
End Time: Oct 7 2003 02:31:21 UT

Visit: 51
Status: Scheduling
Targets: FF–2 FF–3 FF–4 FF–5 FF–6 FF–7 FFAGL
Configs: FGS
Start Time: Oct 12 2003 08:04:30 UT
End Time: Oct 12 2003 08:57:47 UT

Visit: 02
Status: Scheduling
Targets: TV–2 TV–3 TV–5 TV–6 TV–7 TV–8 TVUL TV–44
Configs: FGS
Plan Windows:

Visit: 03
Problems

- No guide stars: PI must change constraints (ORIENT, BETWEEN) or choose a new target. May be acceptable to switch to single star guiding instead of using a pair of guide stars.
- Scheduling conflict with another proposal(s): adjust scheduling requirements on all or one proposal to best retain scientific goals.
- Infeasible orbit structure: need too many consecutive orbits in a visit, or too many CVZ orbits in a cycle. One visit may have to be broken into 2 or more visits. CVZ orbits may have to execute in non-CVZ time.
- Changes in instrument performance: follow advice of INS.
- Bright object concerns: change target or filters
Special Proposals

- SNAPs: “fillers” of less than one orbit duration. Not guaranteed to execute. Used to maintain scheduling efficiency.
- Target of Opportunity (ToO): little or no planning before observations needed. Interrupts calendar building and must be implemented quickly.
- Large proposals: Proposals allocated 100+ orbits can require special implementation due to scheduling constraints. Also take longer to process due to sheer size.
- Calibration proposals: different cycle boundaries, so are submitted at different times. Often require non-routine implementation for special capabilities. Mix of internal and external targets.
- Coordinated proposals: coordinate with observations on other observatories. Requires intense communications with PIs and schedulers.
- Pure Parallels: take advantage of HST’s ability to use multiple instruments at once. Special processing in POMS and scheduling.
Observation Failures

- Guide star acquisition failures
- STIS or NICMOS resets
- Target acquisition failures (STIS)
- Telescope or instrument safing
- PI error in target specification or exposure time calculation
- Implementation errors

Causes of re-scheduling:
- ToO activation
- Servicing mission observations
- Telescope or instrument safing