WFC3 Side Switch Re-Commissioning

John W. MacKenty
Space Telescope Science Institute
2 April 2013
This is the contingency plan for WFC3 re-commissioning on Side 1 following a side switch.

Key Assumptions and Constraints
- Must obtain maximum confidence in Side 1 prior to cooling detectors to avoid multiple cooldown cycles.
 - Real-Time vs. SMS controlled cooldown to be decided during contingency – ability to monitor and abort during cooldown is critical
- Retain option to perform SMOV on only one channel
- CSM Resolver recalibration is not required on Side 1
 - Consistent with ground testing experience
- Science can start fairly quickly with some degree of risk
 - Only “Engineering Activities” absolutely required to start some science
- Re-use of 2009 SMOV Proposals (subset at visit level) rather than writing new proposals
- ERO science is not included in this plan
Fallback Plans

- WFC3 SMOV design is primarily channel based
 - Either UVIS or IR commissioning can proceed without the other
- Major risk areas within each channel
 - Detector cooling: science margin exists to operate warmer at cost of considerable re-calibration (e.g. darks and flats)
 - Detector noise: most of SMOV can proceed during analysis of cause
- Phased start to GO science observations
 - EASY = programs not pushing on risk areas (can overlap sci cal part of SMOV)
 - HARD = programs dependent upon performance in “risk areas”
 - Defer until SMOV determines if these programs require modification
Preliminary Proposal Validation

- SMS OAT work completed
 - 11454 – WFC3 SMS based FT
 - 11358 – Image Memory load and dump (subset)
 - RAM tested via RT commanding
 - 11431 – ANNEAL (full version)
 - 11434 and 11435 – UVIS and IR File Alignments (visit 1 only)

- STScI proceeding to create and validate (PIT) all SS-SMOV proposals
WFC3
Engineering Activities (1)

• 11454/WF01 – Activation Test
 – Re-run of SM4 FT to confirm basic function and stability of instrument.
 – Provide global check of basic SI functionality

• 11358/WF03 – Science Data Buffer Check
 – Validates memory in Side 1 MEB (untested since 2008)

• NOTE: The proceeding steps:
 – Must be done prior to detector cool-downs
 – May all proceed regardless of results of each step

• 11419/WF06 – UVIS Detector Functional test
 – Verify detector readout operation, noise level, and gain.
 – Obtain series of darks and internal flat fields.

• 11420/WF07 – IR Detector Functional test
 – Verify detector readout operation, noise level, and gain.
 – Obtain series of darks and internal flat fields.
WFC3
Engineering Activities (2)

- 11421/WF08 – Channel Select Mechanism Test
 - Verify proper positioning of CSM IR fold mirror and IR diffuser
 - Verify unobstructed UVIS beam
- 11422/WF09 – SOFA and Tungsten Lamp test
 - Verify operation of all SOFA filter wheels.
 - Verify operation of at least 2 Tungsten lamps.
 - Establishes an initial baseline over a broad wavelength range.
- WF10 – IR FSM and Tungsten Lamp Test
 - Verify operation of FSM.
 - Verify operation of at least 2 Tungsten lamps.
 - Establishes an initial baseline for all IR filter elements.
- 11426/WF13 – UVIS SMOV Contamination Monitor
 - Standard star and bias/dark/internal flat observations in F218W, F225W, F275W, F606W
 - Execute weekly for 4 weeks until transition to Cal Contam Monitor (CY21=13088) – 2 orbits per visit
WFC3
Engineering Activities (3)

• 11427/WF14 – UVIS Shutter test
 – Verify operation and timing of the UVIS shutter mechanism.
 – Obtain internal flat fields over a range of exposure times to verify shutter shading is unchanged from ground testing.
 – Obtain observations of a standard star at 0.5, 0.7, 1.0, 1.5, and 2.0 seconds at four locations within the FOV using subarrays.

• 11428/WF15 – D2 Calibration lamp test
 – Verify operation of D2 lamp via UV filter internal flat fields.
 – Establishes an initial baseline for UV filter elements.
 – Determine on-orbit range of D2 lamp “turn-on” times.
 – De-scoped from 2009 SMOV by factor of 2 (Visits 2,5,6,9,11,12 only)

• 13071/WF18 – UVIS Hot Pixel Anneal
 – Demonstrate ability to performance UVIS anneal
 – Maintain strategy of limiting hot pixel growth with CCDs cold
 – Must be performed within 30 days of cool-down of UVIS detector.
 – Uses current (March 2013) Anneal strategy
 – Execution with “UVIS only” or “Full Anneal” to be decided at time of SMS build
WFC3
Contingency Alignment Activities

• Assumptions:
 – No credible failure modes should degrade the alignment outside of the range of the fine alignment proposals.
 – Activating the internal WFC3 tip-tilt/focus mechanisms should not be done solely to verify their operation for a potential future (“out years”) use.

• Conditions for execution of WFC3 Fine Alignment Proposals:
 – Observed degradation of PSF by >20 percent in EE and/or central pixel flux fraction
 – Change in optical bench temperature by >2 degrees C.

• Note: These proposals will require near real-time availability of unique staff

• 11434/WF21 – UVIS Fine Alignment
 – Observe a sparse star field (NGC 188) over a 7 step internal focus sweep.
 – Update optimal focus (real-time uplink)
 – Observe a sparse star field (NGC 188) over a 3x3 internal tip-tilt sweep.
 – Update optimal tip-tilt alignment position (real-time uplink)

• 11435WF22 – IR Fine Alignment
 – Observe a sparse star field (NGC 188) over a 7 step internal focus sweep.
 – Update optimal focus (real-time uplink)
 – Observe a sparse star field (NGC 188) over a 3x3 internal tip-tilt sweep.
 – Update optimal tip-tilt alignment position (real-time uplink)
WFC3
Science Calibration Activities (1)

• 11432/WF19 – UVIS Internal Flats
 – Obtain internal flat fields using the Tungsten lamps
 • D2 flat obtained in activity WF15
 – Limited subset of heavily used filters to verify stability of contamination and instrument flat field (Visits 90-96 only)

• 11433/WF20 – IR Internal Flats
 – Obtain internal flat fields using the Tungsten lamps.
 – Limited subset of heavily used filters to verify stability of instrument flat field (Visits 1,2,3 only)

• 11442/WF29 – FGS-UVIS Alignment
 – Observations of NGC 188 at three positions separated to at least 10 arc seconds and moving in orthogonal directions will be obtained.

• 11443/WF30 – FGS-IR Alignment
 – Observations of NGC 188 at three positions separated to at least 10 arc seconds and moving in orthogonal directions will be obtained.
WFC3
Science Calibration Activities (2)

• 11436/WF23– UVIS Image Quality
 – Detailed characterization of the achieved image quality using the NGC 188 sparse star field.
 – Four observations in F275W and F621M using a 2x2 dither pattern with 0.5 pixel steps will be obtained at two pointings offset by 10 arc seconds.

• 11437/WF24 – IR Image Quality
 – Detailed characterization of the achieved image quality using the NGC 188 sparse star field.
 – Four observations in the F098M, F105W, F127M, F160W, and F164N using a 2x2 dither pattern with 0.5 pixel steps will be obtained at two pointings offset by 10 arc seconds.

• 11438/WF25 – UVIS PSF Wings
 – Observations of a moderately bright star in F275W and F621M to measure the wings of the PSF over a large dynamic range
 – De-scope from 2009 SMOV to include only one field point.

• 11439/WF26 – IR PSF Wings
 – IR PSF Wings in F098M and F160W will be measured at 5 field points over a large dynamic range.
WFC3
Science Calibration Activities (3)

- 11450/WF37 – UVIS Photometric Zero Points
 - Photometric standard star will be observed in high priority filters using sub-arrays.
- 11451/WF38 – IR Photometric Zero Points
 - Two photometric standard stars (red and blue) will be observed in each filter.
- 11452/WF39 – UVIS Flat Field uniformity
 - Omega Cen star field will be observed to assess quality of low frequency flat fields and to check astrometric calibration.
- 11453/WF40 – IR Flat Field uniformity
 - The 47 Tuc star field will be observed to assess quality of low frequency flat fields and to check the astrometric calibration.
WFC3 Calibration Activities (4)

- 11798/WF43 – UVIS PSF Core Modulation
 - Measure impact of UVIS Shutter induced jitter on observations

- 13069/NEW – WFC3 UVIS Post-Flash Calibration
 - Confirm operation and level of UVIS Post-Flash on redundant lamp
 - Initial Calibration of Post-Flash
 - Include Visits B0,B1,B2,B3, D0,D1,D2,D3 from CY19 CAL 13069
Timeline

- **Week 1:**
 - Activation Test (i.e. FT), Memory Tests, go for detector cooldown
- **Week 2:**
 - Engineering Tests; then start “Easy Science”
- **Week 3:**
 - Science Calibration Pages 1 & 2
 - Decision on Image Quality/Optical Alignment
- **Week 4:**
 - Complete Science Calibration; Start “Hard Science”
 - OR
 - Stop Science & Perform Fine Alignment (might take 2 weeks)
- **Week 5 or 6:**
 - Complete Science Calibration; Start “Hard Science”
WFC3 SS-SMOV Program (1)

<table>
<thead>
<tr>
<th>Activity</th>
<th>ProplD</th>
<th>Title</th>
<th>Visits #1</th>
<th>Visits #2</th>
<th>Comments</th>
<th>Ext Orbits</th>
<th>Int Orbits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF01</td>
<td>11454</td>
<td>Activation Test</td>
<td>7</td>
<td>7</td>
<td>Prerequisite for cooldown</td>
<td>12</td>
<td></td>
<td>includes cooldown</td>
</tr>
<tr>
<td>WF02</td>
<td>11357</td>
<td>Memory Test</td>
<td>1</td>
<td>1</td>
<td>Prerequisite for cooldown</td>
<td></td>
<td></td>
<td>OMIT -- in EEPROM</td>
</tr>
<tr>
<td>WF03</td>
<td>11358</td>
<td>Sci Data Buffer Test</td>
<td>14</td>
<td>14</td>
<td>Prerequisite for cooldown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF04</td>
<td>n/a</td>
<td>UVIS CCD Cooldown</td>
<td></td>
<td></td>
<td>R/T Monitoring Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF05</td>
<td>n/a</td>
<td>IR Detector Cooldown</td>
<td></td>
<td></td>
<td>R/T Monitoring Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF06</td>
<td>11419</td>
<td>UVIS Det Functional</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF07</td>
<td>11420</td>
<td>IR Det Functional</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF08</td>
<td>11421</td>
<td>CSM Test</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF09a</td>
<td>11422</td>
<td>UVIS SOFA Test</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF09b</td>
<td>11529</td>
<td>UVIS Spare Tungsten Lamp</td>
<td>2</td>
<td>2</td>
<td>Special Commanding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF10a</td>
<td>11423</td>
<td>IR FSM Test</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF10b</td>
<td>11543</td>
<td>IR Spare Tungsten Lamp</td>
<td>4</td>
<td>4</td>
<td>Special Commanding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF11</td>
<td>11424</td>
<td>UVIS Initial Alignment</td>
<td>3</td>
<td>0</td>
<td>Assume stable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF12</td>
<td>11425</td>
<td>IR Initial Alignment</td>
<td>3</td>
<td>0</td>
<td>Assume stable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF13</td>
<td>11426</td>
<td>UVIS Contam Monitor</td>
<td>21</td>
<td>12</td>
<td></td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>WF14</td>
<td>11427</td>
<td>UVIS Shutter Test</td>
<td>3</td>
<td>3</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WF15</td>
<td>11428</td>
<td>D2 Cal Lamp Test</td>
<td>12</td>
<td>6</td>
<td>Visits 2,5,6,9,11,12 only</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF16</td>
<td>n/a</td>
<td>UVIS TEC Performance</td>
<td>N/A</td>
<td></td>
<td>Engineering Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF17</td>
<td>n/a</td>
<td>IR TEC Performance</td>
<td>N/A</td>
<td></td>
<td>Engineering Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF18</td>
<td>11431</td>
<td>UVIS Hot Pixel Anneal</td>
<td>6</td>
<td>0</td>
<td>Use Current Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF19</td>
<td>11432</td>
<td>UVIS Int Flats</td>
<td>63</td>
<td>7</td>
<td>Visits 90-96 only</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF20</td>
<td>11433</td>
<td>IR Int Flats</td>
<td>50</td>
<td>3</td>
<td>Visits 1,2,3 only</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activities in Blue are UVIS proposals
Activities in Red are IR proposals
Yellow Highlight indication omission from SMOV
<table>
<thead>
<tr>
<th>WF</th>
<th>Code</th>
<th>Description</th>
<th>Priority</th>
<th>Notes</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF21</td>
<td>11434</td>
<td>UVIS Fine Alignment</td>
<td>4</td>
<td>Contingent on Bench Temp</td>
<td>16 EXT/1 INT</td>
</tr>
<tr>
<td>WF22</td>
<td>11435</td>
<td>IR Fine Alignment</td>
<td>4</td>
<td>Contingent on Bench Temp</td>
<td>7 Ext/1 INT</td>
</tr>
<tr>
<td>WF23</td>
<td>11436</td>
<td>UVIS Image Quality</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WF24</td>
<td>11437</td>
<td>IR Image Quality</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>WF25</td>
<td>11438</td>
<td>UVIS PSF Wings</td>
<td>4</td>
<td>De-scoped from 13 orbits</td>
<td>4</td>
</tr>
<tr>
<td>WF26</td>
<td>11439</td>
<td>IR PSF Wings</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>WF27/28</td>
<td>11549</td>
<td>UVIS & IR Pointing Stab</td>
<td>12</td>
<td>Omit</td>
<td>1</td>
</tr>
<tr>
<td>WF29</td>
<td>11442</td>
<td>FGS-UVIS Update</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>WF30</td>
<td>11443</td>
<td>FGS-IR Update</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>WF31</td>
<td>11444</td>
<td>UVIS Plate Scale</td>
<td>2</td>
<td>Omit (Use normal monitor)</td>
<td></td>
</tr>
<tr>
<td>WF32</td>
<td>11445</td>
<td>IR Plate Scale</td>
<td>2</td>
<td>Omit (Use normal monitor)</td>
<td></td>
</tr>
<tr>
<td>WF33</td>
<td>11446</td>
<td>UVIS Dark, Noise, Backgrnd</td>
<td>22</td>
<td>Omit (Use normal monitor)</td>
<td></td>
</tr>
<tr>
<td>WF34</td>
<td>11447</td>
<td>IR Dark, Noise, Backgrnd</td>
<td>22</td>
<td>Omit (Use normal monitor)</td>
<td></td>
</tr>
<tr>
<td>WF35</td>
<td>11448</td>
<td>UVIS SAA Passage</td>
<td>3</td>
<td>Omit</td>
<td></td>
</tr>
<tr>
<td>WF36</td>
<td>11449</td>
<td>IR SAA Passage</td>
<td>3</td>
<td>Omit</td>
<td></td>
</tr>
<tr>
<td>WF37</td>
<td>11450</td>
<td>UVIS Phot Zero Points</td>
<td>4</td>
<td>De-scoped from 8 orbits</td>
<td>5</td>
</tr>
<tr>
<td>WF38</td>
<td>11451</td>
<td>IR Phot Zero Points</td>
<td>8</td>
<td>De-scoped from 4 orbits</td>
<td>2</td>
</tr>
<tr>
<td>WF39</td>
<td>11452</td>
<td>UVIS Flat Field Uniformity</td>
<td>2</td>
<td>De-scoped from 11 orbits</td>
<td>6</td>
</tr>
<tr>
<td>WF40</td>
<td>11453</td>
<td>IR Flat Field Uniformity</td>
<td>3</td>
<td>De-scoped from 9 orbits</td>
<td>3</td>
</tr>
<tr>
<td>WF41</td>
<td>11552</td>
<td>IR Grisms</td>
<td>4</td>
<td>Omit (Use normal monitor)</td>
<td></td>
</tr>
<tr>
<td>WF42</td>
<td>11798</td>
<td>UVIS PSF Core Modulation</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>WF43</td>
<td>11808</td>
<td>UVIS Bowtie Monitor</td>
<td>100</td>
<td>Omit (Use normal cal)</td>
<td></td>
</tr>
<tr>
<td>NEW</td>
<td>13069</td>
<td>Post Flash Check</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Notes

- External orbits = 48 (compared to 132 for SM4 SMOV)
- Internal orbits = 98
 - Anneal & Bowtie from CyXX calibration program
 - Additional 23 External and 2 Internal contingency on optical alignment

- SMOV Activities De-scoped or Omitted for Re-commissioning
 - UVIS Contamination Monitor: one month only; then resume Cal plan
 - Anneal: use current Anneal procedure (probably w/ two channel Anneal)
 - Internal Flats (UVIS and IR): spot checks only
 - Alignment: Initial (coarse) not required; Fine kept as contingency
 - UVIS PSF Wings: only central field point observed
 - Line of Sight Pointing Stability: omitted
 - Plate Scale Calibrations: checked inside Flat Field test
 - UVIS&IR Darks, Bowtie: covered by calibration monitor programs
 - SAA operation and contour tests: omitted