Space Telescope Science Institute
WFC3 Instrument Handbook
help@stsci.edu
Table of Contents Previous Next Index Print


Wide Field Camera 3 Instrument Handbookfor Cycle 22 > Chapter 8: Slitless Spectroscopy with WFC3 > 8.3 Slitless Spectroscopy with the IR G102 and G141 Grisms

8.3
IR grism observations can be obtained using either full-frame or subarray apertures. Subarrays are useful for reducing exposure times for bright objects and for reducing data volume to avoid time lost to serial buffer dumps. First-order spectra for both the G102 and G141 grisms comfortably fit within 512x512 and 256x256 pixel subarrays.
Grism observations of a given target field should always be accompanied by a direct image, which is used to locate sources and determine source sizes. The locations of sources in the direct image are then used to guide the placement of extraction apertures in dispersed images, and to tune the size of the extraction apertures to the source size. The location of sources in direct images is also used to establish the wavelength zero-point for extracted spectra. Appropriate filters to use for direct images are discussed in the following sections for each IR grism. As with normal imaging observations, grism observations should be dithered to aid in the removal of bad pixels. Accompanying direct images can be obtained at each of the same grism dither positions, but this is not strictly necessary. It is usually sufficient to obtain a direct image at just 1 or 2 of the dither positions.
The GRISM apertures (Table 7.1) are designed to be used for both the grism exposure and the associated direct image. At a given telescope pointing, the first order spectrum and the location of the target in the direct image are roughly aligned in the x direction. The G102 spectrum starts at about 55 pixels to the right of the target image location and extends about 155 pixels; the G141 spectrum starts at about 35 pixels to the right of the target image location and extends about 135 pixels. For either grism, the same pointing can thus be used to place the target image and the first order spectrum on an array with dimensions greater than about 210 pixels. The apertures GRISM1024, GRISM512, and GRISM256 have been designed to take advantage of this, with the placement of the target optimized for the dimensions of the array, which is indicated by the number in the aperture name. For the smaller apertures, GRISM128 and GRISM64, different pointings are automatically used for the direct image and the grism exposure so that the target is within the aperture in the direct image and the target’s spectrum is also inside the aperture in the grism image. See http://www.stsci.edu/hst/wfc3/analysis/grism_obs/wfc3-grism-faq.html for details on selecting GRISM apertures and using combinations of these apertures.
The performance of the IR grisms was analyzed during SMOV (WFC3 ISR 2009-17, WFC3 ISR 2009-18). The flux calibration was revised based on calibration observations made in cycle 17 (WFC3 ISR 2011-05). Analysis of monitoring observations made from SMOV through cycle 19 has shown that the flux calibrations of the +1st order spectra have excellent temporal stability, varying by less than 1%, and that the calibration of the large-scale throughput variations over the detector are good to 4% (WFC3 ISR 2012-06). Sky images for the IR grisms have been constructed using publicly available data; the average sky brightness measured in the G102 and G141 images is 0.8 e-/s and 1.3 e-/s, respectively (WFC3 ISR 2011-01).
8.3.1 IR G102
The G102 grism provides first-order spectra over the wavelength range from the grism short-wavelength cutoff at about 800 nm up to 1150 nm. The dispersion is high enough that only the positive first and second-order spectra, as well as the zeroth-order image, are visible on the detector when the positive first-order spectrum is centered in the field of view.
Figure 8.4 shows the disposition of the zeroth-order image and +1st-order spectrum (which has much higher sensitivity than the –1st order due to the grating blaze) for the G102 grism. The location of the direct image (superposed from an F098M undispersed exposure) is indicated in the figure.
Figure 8.4: G102 grism observation of the flux standard star GD153 (program 11552) with a F098M direct image (circled) superimposed to illustrate the relative positions. Spectral orders 0, +1, and +2 can be seen on the image. The image shows the full extent of the detector in the x-axis and about 200 pixels in the y-axis.
The trace of the first-order spectrum is well described by a first-order polynomial, however the offset and slope are a function of source position in the field. The tilt of the spectrum is 0.7 with respect to the detector x-axis. The total throughput (including HST optics) of the G102 grism has a maximum of 41% at 1100 nm in the positive first order and is above 10% between 805 and 1150 nm. The zeroth order and other negative and positive orders show much lower throughput (see Figure 8.5). The dispersion in the +1st order varies over the field from 2.36 to 2.51 nm/pixel; this variation was calibrated from both ground and on-orbit data to allow absolute wavelength calibration to better than one pixel. The absolute throughput of the G102 orders –1 to +3, including the instrument and the detector, is shown in Figure 8.5. Suitable filters for the accompanying direct images for source selection and wavelength zero-point determination are F098M or F105W (see Section 7.9.5 for discussion of the IR background), but any of the narrower filters can also be used to prevent bright sources from saturating.
Figure 8.5: The absolute throughput of the G102 grism as a function of wavelength.
8.3.2 IR G141
For the lower-dispersion G141 grism, the 0th-, 1st-, 2nd-, and 3rd-order spectra all lie within the field of view when the positive first-order is roughly centered. Figure 8.6 shows the appearance of the spectra on the detector, with the superposed direct image, for the G141 grism. The useful spectral range is from 1075 nm to about 1700 nm, limited in the red by the grism bandpass. Over most of the spectral range, more than 80% of the throughput is in the +1st-order spectrum. The trace of the first-order spectrum is well described by a first-order polynomial. The average tilt of the spectrum is 0.5 degrees with respect to the detector x-axis. The dispersion in the +1st-order varies over the field from 4.47 to 4.78 nm/pixel; this variation has been measured from both ground and on-orbit data to allow absolute wavelength calibration to better than one pixel. The total throughput (including HST optics) of the G141 grism reaches a maximum of 48% at ~1450 nm in the positive first order and is above 10% between 1080 and 1690 nm (see Figure 8.7).
Figure 8.6: G141 grism observation of the flux standard star GD153 (program 11552) with a F140W direct image (circled) superimposed to illustrate the relative positions. Spectral orders 0, +1, +2, and +3 can be seen in the image. The image shows the full extent of the detector in the x-axis and about 200 pixels in the y-axis.
Figure 8.7: The absolute throughput of the G141 grism as a function of wavelength.
Suitable filters for the accompanying direct images for source selection and wavelength zero-point determination are F140W or F160W in the case of extremely red sources. Any of the narrower IR filters can also be used in order to avoid saturation of bright targets.

Wide Field Camera 3 Instrument Handbookfor Cycle 22 > Chapter 8: Slitless Spectroscopy with WFC3 > 8.3 Slitless Spectroscopy with the IR G102 and G141 Grisms

Table of Contents Previous Next Index Print