At the end of each UVIS or IR exposure, images are read into WFC3's internal buffer memory, where they are stored until they are transferred to HST's solid-state data recorder. The time needed to read a UVIS CCD image is 98 seconds. The time needed for a single read of an IR image is 3 seconds, leading to a total of 48 seconds for a full 16-read exposure. These times are included in the overhead times for the first and subsequent exposures presented in
Table 10.2 below.
The WFC3 buffer provides temporary storage of images read from the WFC3 detectors before they are dumped through the HST science data formatter (SDF) to the solid state recorder (SSR). The buffer can be dumped either between exposures (a “serial” dump), or during an exposure (a “parallel” dump), but cannot overlap any commands executed in WFC3, including the commands at the beginning or at the end of an exposure. The buffer may be dumped during pointing maneuvers, but not during acquisition of guide stars. The buffer may be dumped during target occultation, which does not deduct from the target visibility time. Switching channels (IR and UVIS) does not require dumping the buffer. Observers will generally prefer to use parallel dumps, in order to more fully utilize the time when a target is visible for science exposures. Although buffer dumps are typically forced by science data volume, a buffer dump will also be forced whenever the buffer holds 304 image headers, regardless of the size of the images themselves. The 304-file limit is unlikely to be reached under typical conditions.
Table 10.2 summarizes all of the instrument overheads described in this subsection.
If your science program is such that a field of view smaller than the full detector size is adequate and you require many short exposures, then one way to reduce the frequency of buffer dumps, and hence their associated overheads, is to use a WFC3 subarray. Subarrays are described for the UVIS channel in Section 6.4.4, and for the IR channel in
Section 7.4.4. When subarrays are used, only a small region of the detector is read out and stored in WFC3’s buffer. The reduced data volume permits a larger number of exposures to be stored in the buffer before the memory fills and it becomes necessary to transfer them to the telescope’s solid-state recorder. Use of subarrays reduces the amount of time spent dumping the buffer, and also usually reduces detector readout time. (Note, however, that the full-quadrant UVIS 2K2 and UVIS-QUAD-SUB apertures have somewhat longer readout times than the full- detector apertures because of the way that the readout is performed. The feasibility of reducing the readout time for these apertures is under investigation.) A dump is still required if the 304-file limit is reached before buffer memory is filled.
The areas (ASA) of the supported UVIS subarrays are 1/4, 1/16, or 1/64 of the area (
AFF) of a full-frame image. The areas of the IR subarrays are 1/4, 1/16, 1/64, or 1/256 of the area of a full-frame image. The number of subarray exposures that may be stored in the buffer, limited by image data volume, is
n = 2 (
AFF/ASA). For example, eight 1/4-area exposures may be stored in the buffer, which would allow eight 4-minute exposures to be taken and stored before having to dump the buffer. If the exposures were full-frame, the buffer would have to be dumped after each pair of observations, thus leading to very low observing efficiency.
Data volume and overhead time can also be reduced for UVIS images by using on- chip binning of adjacent pixels, as described in Section 6.4.4. By using 2
×2 pixel binning, the data volume is reduced by a factor of 4, although the readout time is only reduced by about a factor of 2 to 50 sec. For 3
×3 pixel binning it is reduced by a factor of 9, and the readout time by a factor of 4 to 23 s. IR readouts cannot be binned, but data volume may be reduced by taking less than the default 15 samples during an exposure.