We review the status of the Wide-Field Planetary Camera II (WFPC2) onboard the Hubble Space Telescope, as well as summarize the re-commissioning tests performed after the December 1999 Servicing Mission (SM3a). While WFPC2 itself was not serviced, there is always concern about contamination or other unexpected effects. Although contamination rates increased during the mission (as expected), bi-weekly decontaminations immediately after SM3a, and subsequent monthly decons have successfully restored the UV throughput to their pre-SMOV values, and there is no evidence of any permanent contamination. A photometric sweep covering the entire wavelength range of WFPC2 shows that any changes in the photometric response are less than ~1% at visible wavelengths, and less than ~2.5% in the UV. No changes due to SM3a were seen in the flat field response, read noise, dark current, a-to-d gain ratios, and point spread function tests. In addition to the SM3a results, we also discuss the general status of WFPC2, including improved documentation for dithering, the new public On-The-Fly-Calibration (OTFC) system, and plans for calibrating WFPC2 in Cycle 9. CTE results are presented in a separate poster.

Flat Field Stability Check. As part of our post-servicing check-out of WFPC2 we compared Earthflats taken before and after SM3a. This was done to test for OTA obscuration and contamination in WFPC2, changes in the OTA/WFPC2 geometry, and localized CCD QE changes that may have resulted from the servicing mission. Earthflats were observed as part of the routine calibration proposals 8053 and 8445, as well as proposal 8495 for SM0V3a. All the flats used in this test are F502N in 1.5, 2 second exposures of the bright Earth. Eight pre-SM0V3a images with less than ~1% peak-to-peak amplitude in the streaks (produced by features on the Earth moving across the FOV) were selected. Five images from the SM0V3a proposal matching the same criteria were also chosen. These 2 groups of flats were individually combined using the IRAF task `streakflat`, to create single pre- and post-SMOV flats. We then divided the SMOV flat by the pre-SMOV flat, and normalized the resulting image so the central 400x400 pixels of WF3 had a mean of unity. The resulting SM0V/pre-SMOV image is shown in Figure 1. Most of the field-of-view shows essentially no change, <0.3%. Changes of up to ~1.5% are seen at the CCD corners, particularly near the apex, and are likely due to long-term changes in the camera geometry, rather than SM3a.

SMOV Photometry Check. Observations of standard star GRW+70D5824 for the SMOV3a photometry check were made on January 18, 2000. The star was positioned in the center of each camera during four 1-orbit visits, one visit per camera. Images were obtained in the filters F160BW, F170W, F185W, F218W, F255W, F300W, F336W, F439W, F555W, F675W, and F814W. Photometry was performed using the `phot` task in STSDAS, with the star positions manually identified as input. Apertures of 11 ~ 5 pixels were used for the PC & WF cameras, respectively. The photometric results from the SMOV3a observations were then compared to standard, pre-SM0V3a photometric monitoring data, taken before the November 13, 1999 servicing. The data indicates that the throughputs for the visible filters, except for the F814W filter, are consistent with no change exceeding ~1%. The throughput for the UV and F814W filter data is consistent with no change exceeding ~2%. The photometric throughputs show that WFPC2 suffered no ill effects from Servicing Mission 3a. Additionally, the Lyman-Alpha throughput measurements for SMOV3a did not show any significant changes compared to pre-SM0V3a. The WFPC2 pick-off mirror appears to have been protected from any significant contamination.

Drizzling Software and Documentation. Many imaging programs carried out with WFPC2 now use position offset dithers to aid in the removal of detector artifacts, as well as enhancing spatial resolution. These images can be combined using the "Drizzle" software written by Andrew Fruchter (STScI) and Richard Hook (ST-ECF). The basic Drizzling routines are incorporated in the STSDAS "Dither" package. In the next release of STSDAS (Summer 2000), the "Dither" package will also include tasks that allow the removal of cosmic rays from singly-dithered datasets that have only one image at each dither position (previously these tasks had to be downloaded separately from STScI as the ditherII package). We are also releasing "The Dither Handbook" (Koekemoer, et al., 2000), a complete guide to planning, obtaining and analyzing dithered HST data. This document provides general discussions on dithering strategies with HST instruments (currently including WFPC2, STIS, and NICMOS, and in the future ACS), together with a "Cookbook" section that gives detailed examples of drizzling procedures. All the input images and scripts for these examples, as well as the final output images, are available from our WFPC2 website, to enable observers to gain experience in the use of the drizzling software through practicing with these examples. As an example, the two figures shown above are "before" and "after" WFPC2 images of the Hawaii Deep Survey Field SSS2. The left image is one of 12 single-image dithers, while the image on the right is the result of shifting and drizzling all 12 images, showing the success of cosmic-ray removal for singly-dithered data with the new software. Complete information and software can be found at http://www.stsci.edu/instruments/wfpc2/ddirect.html.

**Cycl...