There is an obvious parallel with the Universe around us. The lights in the dark night sky have a strong acoustic component — due to the long distances in space, we see the echoes of worlds which passed away a long time ago...
Doppler effect

The Doppler effect is the observed change in the wavelength of light, or frequency of sound, from an object that is moving toward or away from an observer. For light, an object moving toward an observer at a good fraction of the speed of light will appear relatively bluer. The wavelengths of its light are compressed or shifted toward the bluer region of the electromagnetic spectrum. For objects receding from the observer, the wavelengths of light will be stretched toward the red end of the spectrum. For sound, the pitch of a whistle from an object moving a good fraction of the speed of sound will be higher or lower depending on whether the source is approaching or moving away from the observer.

Expansion of the universe

The universe is expanding after beginning in a hot, dense, and compact state. In this expanding universe, the volume of space between all matter, including galaxies, is increasing with time. Evidence for this expansion comes from observations that the light from increasingly distant galaxies appears increasingly red. The galaxies’ light is stretched to longer (redder) wavelengths by the expansion of space. Observations of distant exploding stars called supernovae suggest that the universe’s expansion rate is now accelerating under the influence of dark energy, a mysterious repulsive force embedded in the fabric of space-time.