Far-Ultraviolet Spectroscopy of Comets with the Cosmic Origins Spectrograph on HST

Paul D. Feldman1, Harold A. Weaver2, Michael F. A’Hearn3, Michael R. Combi4, and Neil Dello Russo2

1Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA, pdf@pha.jhu.edu,
2Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA,
3Astronomy Department, University of Maryland, College Park, MD 20742, USA,
4Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Overview

• Three comets, 103P/Hartley 2, C/2009 P1 (Garradd), and C/2012 S1 (ISON) (observed after abstract submission) were observed by HST using the Cosmic Origins Spectrograph (COS) since May 2009.
• Each new generation of UV spectrograph on HST allows higher sensitivity and better spectral resolution of the CO Fourth Positive system in the spectral range of 1400 to 1700 Å.
• In most cases, the water production rate was derived from nearly simultaneous observations of the OH (0,0) band at 3085 Å by the Space Telescope Imaging Spectrograph (STIS), allowing determination of the Q(CO)/Q(H₂O) ratio in these comets.
• In all three comets, strong partially resolved emission features due to multiplets of S I, centered at 1429 Å and 1479 Å, and multiplets of C I at 1561 Å and 1657 Å, were observed. The S I intercombination multiplet at 1479 Å is resolved from the allowed resonance multiplet but its excitation source remains unclear.
COS Comet Observation Parameters

<table>
<thead>
<tr>
<th>Comet</th>
<th>Date</th>
<th>r_helio (AU)</th>
<th>r_dot (km s(^{-1}))</th>
<th>Δ (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>103P/Hartley 2</td>
<td>2010 Sep 25</td>
<td>1.15</td>
<td>−9.3</td>
<td>0.22</td>
</tr>
<tr>
<td>103P/Hartley 2</td>
<td>2010 Nov 04</td>
<td>1.06</td>
<td>+2.1</td>
<td>0.15</td>
</tr>
<tr>
<td>103P/Hartley 2</td>
<td>2010 Nov 28</td>
<td>1.14</td>
<td>+9.0</td>
<td>0.27</td>
</tr>
<tr>
<td>C/2009 P1 (Garradd)</td>
<td>2012 Jan 19</td>
<td>1.59</td>
<td>+5.5</td>
<td>1.72</td>
</tr>
<tr>
<td>C/2012 S1 (ISON)</td>
<td>2013 Oct 21</td>
<td>1.23</td>
<td>−37.7</td>
<td>1.53</td>
</tr>
<tr>
<td>C/2012 S1 (ISON)</td>
<td>2013 Nov 01</td>
<td>0.99</td>
<td>−42.0</td>
<td>1.22</td>
</tr>
</tbody>
</table>

STIS Observations

<table>
<thead>
<tr>
<th>Comet</th>
<th>Date</th>
<th>r_helio (AU)</th>
<th>r_dot (km s(^{-1}))</th>
<th>Δ (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>153P/Ikeya-Zhang</td>
<td>2002 Apr 20/21</td>
<td>0.90</td>
<td>+29.1</td>
<td>0.43</td>
</tr>
<tr>
<td>C/2001 Q4 (NEAT)</td>
<td>2004 Apr 25/26</td>
<td>1.02</td>
<td>−10.2</td>
<td>0.47</td>
</tr>
</tbody>
</table>
103P/Hartley 2: View from EPOXI and HST
103P/Hartley 2 – HST/COS

lbk606010_x1dsum.fits+lbk609010_x1dsum.fits FUVA 2410 s

lbk606010_x1dsum.fits+lbk609010_x1dsum.fits FUVB 2410 s

Lupu CO model, T=75 K, N=1.0e13, FWHM=1.0 Å
COS FUV spectrum – C/2009 P1 (Garradd)

lbws14010_x1dsum.fits FUVA 999 s

Wavelength (Å)
Brightness (rayleighs Å⁻¹)

C I
He I x3
He I x3

lbws14010_x1dsum.fits FUVB 999 s

Wavelength (Å)
Brightness (rayleighs Å⁻¹)

S I
S I
weighted Lupu CO model, T=50 K, b=1.0, FWHM=1.0 Å
Comet C/2012 S1 (ISON)
Q(CO)/Q(H₂O) ~ 1.3%, similar to what was obtained on 28 October (~1.5%).
Modeling of the CO Fourth Positive bands

• Model follows the approach of Lupu et al. (ApJ, 670, 1473, 2007), for treating saturation of individual lines in a ro-vibrational band (following slides).
• Average column density in the COS 2.5” diameter aperture is derived from observed spectrum. CO production rate is then calculated assuming radial outflow from a symmetric point source.
• Adjustable parameters include rotational temperature (T_{rot}), outflow velocity, and solar flux. We use $T_{rot} = 50$ K (for Garradd, Paganini et al. ApJ (Letters), 748, L13, 2012), an outflow velocity of 0.7 km s$^{-1}$, and a solar flux appropriate to solar activity at the time of observation.
• The uncertainties in these parameters give a derived value of Q(CO) reliable to 20—30%.
• From the OH data, a vectorial model fit yields Q(H$_2$O) enabling the determination of CO production rate relative to that of H$_2$O from nearly simultaneous observations.
HST/STIS: Comet Ikeya-Zhang
Comet Ikeya-Zhang: CO Fourth Positive bands

Derived CO Production Rates

<table>
<thead>
<tr>
<th>Comet</th>
<th>Date</th>
<th>r_h (AU)</th>
<th>Δ (AU)</th>
<th>Inst</th>
<th>N(CO) *</th>
<th>Q(CO) §</th>
<th>Q(H$_2$O) §</th>
<th>Q(CO)/Q(H$_2$O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>103P/Hartley 2</td>
<td>2010 Nov 04</td>
<td>1.06</td>
<td>0.15</td>
<td>COS</td>
<td>1.15a</td>
<td>0.0026</td>
<td>0.85</td>
<td>0.003</td>
</tr>
<tr>
<td>C/2009 P1 (Garradd)</td>
<td>2012 Jan 19</td>
<td>1.59</td>
<td>1.72</td>
<td>COS</td>
<td>100</td>
<td>2.0</td>
<td>10.</td>
<td>0.20</td>
</tr>
<tr>
<td>C/2012 S1 (ISON)</td>
<td>2013 Nov 01</td>
<td>0.99</td>
<td>1.22</td>
<td>COS</td>
<td>1.50</td>
<td>0.03</td>
<td>2.4</td>
<td>0.013</td>
</tr>
<tr>
<td>153P/Ikeya-Zhang</td>
<td>2002 Apr 20</td>
<td>0.90</td>
<td>0.43</td>
<td>STIS</td>
<td>613b</td>
<td>1.54 ± 0.09b</td>
<td>21.5</td>
<td>0.072</td>
</tr>
<tr>
<td>C/2001 Q4 (NEAT)</td>
<td>2004 Apr 25</td>
<td>1.02</td>
<td>0.47</td>
<td>STIS</td>
<td>684b</td>
<td>1.76 ± 0.16b</td>
<td>20.</td>
<td>0.088</td>
</tr>
</tbody>
</table>

*(1013 cm$^{-2}$) §(1028 s$^{-1}$)

Apertures: COS 2.5” diameter
STIS: 0.2” x 1.5”

Comet Garradd CO and H$_2$O

Bodewits et al. (astro-ph 1403.0092); following Feaga et al. (AJ 147:24, 2014)
At the 1 Å resolution of COS both the $^3P - ^3D^o$ multiplets and the intercombination $^3P - ^5D^o$ multiplet are resolved.

Relative line intensities of the allowed multiplets can be modeled with solar resonance fluorescence assuming thermal populations of the ground state J levels.
S I multiplets at 1479 Å

S I emission in C/2009 P1 (Garradd)

rh = 1.59
rdot = 5.40
bvalue = 1.0

S column = 1.50e+13 T = 100.0

Lupu CO model, T=50 K, N=1.0e15, FWHM=1.0 Å
Comets Ikeya-Zhang and NEAT

Fig. 7.—Residuals from the spectrum of 153P/Ikeya-Zhang and C/2001 Q4 after subtracting the best-fit CO model \((N = 3.07 \times 10^{15} \text{ and } 3.49 \times 10^{15} \text{ cm}^{-2}, \text{respectively})\). The comet spectra were extracted from a region of 4" width, centered on the comet nucleus. The red line is the predicted H\(_2\) fluorescence spectrum pumped by solar Ly\(/\alpha\) for a column density of \(1.0 \times 10^{14} \text{ cm}^{-2}\) and a rotational temperature of 200 K. Other atomic contributions are shown in blue.
Model fits: Comets Ikeya-Zhang and NEAT

153P/Ikeya–Zhang

C/2001 Q4 (NEAT)
FIG. 1. a and b. Sensitivity calibrated CS$_2$ photoemission spectrum over the wavelength range from 115–170 nm for an electron-impact energy of 100 eV. In Table I, the transitions producing all but the smallest features are identified and their emission cross sections are presented.

C I model fit: C/2009 P1 (Garradd)

If electron dissociative excitation of either CS$_2$ or H$_2$S were significant we would expect to see several Rayleighs of S I ($^1D - ^1D^o$) emission at 1666.9 Å.
Derived Column Densities

<table>
<thead>
<tr>
<th>Comet</th>
<th>Date</th>
<th>r_h (AU)</th>
<th>Δ (AU)</th>
<th>Inst</th>
<th>N(C)*</th>
<th>N(S)*</th>
<th>N(CO)*</th>
<th>Q(CO)$§</th>
</tr>
</thead>
<tbody>
<tr>
<td>103P/Hartley 2</td>
<td>2010 Nov 04</td>
<td>1.06</td>
<td>0.15</td>
<td>COS</td>
<td>0.03</td>
<td>1.0</td>
<td>1.15a</td>
<td>0.0026</td>
</tr>
<tr>
<td>C/2009 P1 (Garradd)</td>
<td>2012 Jan 19</td>
<td>1.59</td>
<td>1.72</td>
<td>COS</td>
<td>0.25</td>
<td>1.5</td>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>C/2012 S1 (ISON)</td>
<td>2013 Nov 01</td>
<td>0.99</td>
<td>1.22</td>
<td>COS</td>
<td>0.05</td>
<td>0.5</td>
<td>1.50</td>
<td>0.03</td>
</tr>
<tr>
<td>153P/Ikeya-Zhang</td>
<td>2002 Apr 20</td>
<td>0.90</td>
<td>0.43</td>
<td>STIS</td>
<td>5.0</td>
<td>50</td>
<td>613b</td>
<td>1.54 ± 0.09b</td>
</tr>
<tr>
<td>C/2001 Q4 (NEAT)</td>
<td>2004 Apr 25</td>
<td>1.02</td>
<td>0.47</td>
<td>STIS</td>
<td>1.0</td>
<td>10</td>
<td>684b</td>
<td>1.76 ± 0.16b</td>
</tr>
</tbody>
</table>

*(1013 cm$^{-2}$)
§(1028 s$^{-1}$)

Apertures:
COS 2.5” diameter
STIS: 0.2” x 1.5”
Summary

• With COS we have observed three comets and found the CO production rate relative to H_2O to span two orders of magnitude. Comet C/2009 P1 (Garradd), observed over a long time span by many different observers, showed an unusual behavior in CO/H_2O production rates.

• In 103P/Hartley 2, the CO production rate, relative to water, is the lowest ever measured, and beyond the capability of infrared and sub-mm instruments. Data from the EPOXI fly-by of this comet showed an unusually high abundance of CO_2 as well as an extended coma of icy grains.

• The S I intercombination multiplet, $^5\text{D}^o - ^3\text{P}$, at 1479 Å, is resolved from the allowed resonance multiplet, $^3\text{D}^o - ^3\text{P}$ and appears in the same relative proportion to the allowed transition all three comets. The excitation mechanism remains unclear.

• The Rosetta mission, which recently exited hibernation on January 20 of this year, may provide ground truth for some of these questions. Regrettably, its target, comet 67P/C-G, will not be observable by HST for most of its apparition because of solar constraints.
Thanks!

- Heartfelt thanks to Alison Vick, Tony Roman, Merle Reinhart, Dave Sahnew, Bill Workman, and Tracy Ellis (all at STScI) for their expert assistance in planning and executing these time-critical moving target observations.