Intermediate mass star: magnetic field, rapid rotation and seismology

F. Lignières

Institut de Recherche en Astrophysique et Planétologie - Toulouse

28th IAU GA, High Precision Stellar Physics, Beijing 2012
Motivations

Stellar evolution with magnetic field and rotation

- $M > 1.5 \, M_\odot$ stars: a laboratory with great potential but ...
- magnetism and rotation remain poorly constrained/understood as compared to solar-type stars

Two old problems prevent direct constraints on internal rotation and magnetism

- rapid rotation prevents detailed seismic diagnostic: a modelling issue
- the magnetic field in the vast majority of the stars is unconstrained: an observational issue
Stellar rotation across the main-sequence

The hot/cool star dichotomy

(from Royer et al. 2007 and Peterson et al. 2006)
Computing oscillation modes in rotating stars

\(\Omega = 0 \Rightarrow \text{spherical symmetry} \)

The solutions are fully separable \(g(\vec{x}) = f(r)P^m_\ell(\theta)\exp(im\phi) \)

\(\Rightarrow \) solve a 1D linear boundary value problem (for each \(\ell \) and \(m \))

\(\Omega \neq 0 \Rightarrow \text{axial symmetry + equatorial symmetry} \)

The solutions are only partially separable \(g(\vec{x}) = f(\vec{x}_M)\exp(im\phi) \)

\(\Rightarrow \) solve a 2D linear boundary value problems for each \(m \pm \)

A significantly more difficult problem

- construct a complex code with accuracy constraints from spatial photometry
- explore a dense frequency spectrum
- no simple physical classification of the modes
Computing oscillation modes in rotating stars

Ω = 0 ⇒ spherical symmetry

The solutions are fully separable \(g(\vec{x}) = f(r)P_\ell^m(\theta)\exp(im\phi) \)

⇒ solve a 1D linear boundary value problem (for each \(\ell \) and \(m \))

Ω ≠ 0 ⇒ axial symmetry + equatorial symmetry

The solutions are only partially separable \(g(\vec{x}) = f(\vec{x}_M)\exp(im\phi) \)

⇒ solve a 2D linear boundary value problems for each \(m± \)

A significantly more difficult problem

▸ construct a complex code with accuracy constraints from spatial photometry
▸ explore a dense frequency spectrum
Computing oscillation modes in rotating stars

Ω = 0 ⇒ spherical symmetry

The solutions are fully separable \(g(\vec{x}) = f(r)P_{\ell}^{m}(\theta) \exp(i m \phi) \)

⇒ solve a 1D linear boundary value problem (for each \(\ell \) and \(m \))

Ω ≠ 0 ⇒ axial symmetry + equatorial symmetry

The solutions are only partially separable \(g(\vec{x}) = f(\vec{x}_M) \exp(i m \phi) \)

⇒ solve a 2D linear boundary value problems for each \(m \pm \)

A significantly more difficult problem

▶ construct a complex code with accuracy constraints from spatial photometry
▶ explore a dense frequency spectrum
▶ no simple physical classification of the modes
No simple physical classification of the modes

\[\Omega = 0 \]

\[\Omega \neq 0 \]

- \(n \) radial nodes, \(\ell \) latitude nodes
- complex node pattern
Summary of recent progress with 2D models

- 2D codes are available: TOP (Reese et al., 2006, 2009), NRO (Lovekin et al., 2008), ACCOR (Ouazzani et al, submitted)

- Significant numerical explorations of the p-mode and g-mode spectra have been performed (Lignières et al. 2006, Reese et al., 2006, 2008, 2009, Lovekin et al. 2008, Ballot et al. 2012)

Summary of recent progress with 2D models

- 2D codes are available: TOP (Reese et al., 2006, 2009), NRO (Lovekin et al., 2008), ACCOR (Ouazzani et al., submitted)

- Significant numerical explorations of the p-mode and g-mode spectra have been performed (Lignières et al. 2006, Reese et al., 2006, 2008, 2009, Lovekin et al. 2008, Ballot et al. 2012)

- An asymptotic theory provides a framework to understand p-modes properties (Lignières & Georgeot, 2008, 2009, Pasek et al., 2011, 2012)

Some results

- Limit of validity of approximate approaches
- p-mode classification
- New regular spacings at high rotation rates
Testing approximate treatments of the rotation

- Perturbative methods \(\omega = \omega_0 + \omega_1 \Omega + \omega_2 \Omega^2 \ldots \)

\[\delta \nu = 0.1 \mu \text{Hz} \]

- \(1^{\text{st}} \) order
- \(2^{\text{nd}} \) order
- \(3^{\text{rd}} \) order

- low degree \(\ell \leq 3 \)
- \(M = 3 \, M_\odot, \, R = 2 \, R_\odot \)

from Reese et al. (2006) and Ballot et al. (2010), see also Lovekin et al. 2008, Suárez et al. 2010, Burke et al. 2011
Acoustic rays

\[\Omega = 0 \]
Acoustic rays

\[\Omega = 0 \]

\[\Omega = 0.6\Omega_K \]
Acoustic dynamics phase space

\[\Omega = 0 \]

\[\Omega = 0.6 \Omega_K \]
Classification and spectrum structure from a ray based asymptotic theory

\[\Omega = 0.6 \Omega_K \]
Classification and spectrum structure from the ray based asymptotic theory
Classification and spectrum structure from the ray based asymptotic theory
Classification and spectrum structure from the ray based asymptotic theory

The spectrum is a superposition of sub-spectra with specific properties

Lignières & Georgeot 2008, 2009
From low degree modes to island modes

Centrifugal volume growth \Rightarrow global spectrum contraction

$\ell = \begin{array}{cccc}
1 & 0 & 1 & 0 \\
\hline
\end{array}$

$\Omega/\Omega_k = 0$

$\Omega/\Omega_k = 0.18$

$\Omega/\Omega_k = 0.40$

$\Omega/\Omega_k = 0.59$

$\omega/(GM/R^3)^{1/2}$
From low degree modes to island modes
The asymptotic view

Rescaling of the spectrum

\[\ell = 1 \quad 0 \quad 1 \quad 0 \]

\[\Omega / \Omega_k = 0 \]

\[\Omega / \Omega_k = 0.18 \]

\[\Omega / \Omega_k = 0.40 \]

\[\Omega / \Omega_k = 0.59 \]

\[\omega / \omega_1(\Omega) \]
From low degree modes to island modes

Evolution of the small separation

<table>
<thead>
<tr>
<th>ℓ</th>
<th>1</th>
<th>20</th>
<th>1</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω/Ω_k</td>
<td>0</td>
<td>0.18</td>
<td>0.40</td>
<td>0.59</td>
</tr>
<tr>
<td>$\omega/\omega_1(\Omega)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The small separation $(\ell, n + 1, 0) - (\ell + 2, n, 0)$ is no longer small
From low degree modes to island modes

Evolution of the $\ell = 1, m = \pm 1$ multiplet: in the rotating frame

$\ell = 1 \quad 0 \quad 1 \quad 0$

$\Omega/\Omega_k = 0$

$\Omega/\Omega_k = 0.18$

$\Omega/\Omega_k = 0.40$

$\Omega/\Omega_k = 0.59$

$\omega(m) \sim \omega(-m)$ because the Coriolis force is negligible

$(\ell + 1, n, m = \pm 1)$: from $(\ell + 1, n, m = 0)$ to $(\ell, n, m = 0)$
From low degree modes to island modes

Evolution of the $\ell = 1, m = \pm 1$ multiplet: in the observer’s frame

- $\ell = 1, 0, 1, 0$
- $\Omega / \Omega_K = 0$
- $\Omega / \Omega_K = 0.18$
- $\Omega / \Omega_K = 0.40$
- $\Omega / \Omega_K = 0.59$

- $\Omega \sim 0$: equidistant multiplet $\omega_0 + m\Omega$
- Intermediate Ω: no equidistant multiplet
- High $\Omega > \sim 0.4\Omega_K$: new equidistant multiplet $\omega_0 + m\Omega$ if m not too large
From low degree modes to island modes

Evolution of the $\ell = 2, m = \pm 2$ multiplet: in the observer frame

- Even the $\ell = 0$ mode has a multiplet!!

\[\Delta \omega_I = m\Omega \text{ at low rotation to } \Delta \omega_I = \Omega \text{ at high rotation} \]
Intermediate-mass star magnetism

Some years ago ...

- All magnetic stars have Ap type abundance anomalies
- Fields are nearly dipolar, strong (~ 1 kG), stable in time
- If all Ap/Bp stars are magnetic, 5 to 10 percents of intermediate mass stars are magnetic

Open questions

- A fossil origin of the field?
- Why only 5 percents should be magnetic?
- Stellar evolution of normal A stars with or without magnetic field?
Progress with spectropolarimeters Narval@TBL, Espadons@CFHT

- Ap/Bp magnetic field lower bound: ~ 300 Gauss (Auriere et al. 2007)
- No detection of magnetic fields between 100 G and 1 G (Auriere et al. 2010)
Intermediate-mass star magnetism

Progress with spectropolarimeters Narval@TBL, Espadons@CFHT

- Ap/Bp magnetic field lower bound: ~ 300 Gauss (Auriere et al. 2007)
- no detection of magnetic fields between 100 G and 1 G (Auriere et al. 2010)

Two magnetisms and a magnetic desert

- Are all intermediate-mass stars magnetic?
- Properties of Vega-like magnetism?
- Origin of the Ap/Bp magnetic lower bound and of the magnetic desert?
A scenario for the Ap magnetic lower bound and the magnetic desert

\(\mathbf{\vec{B}} \) stability in a differentially rotating star (e.g. Spruit 1999)

- Strong \(B \) suppress differential rotation and reaches stable configurations
- Weak poloidal field \(B_p \) ⇒ strong azimuthal field \(B_\phi \) ⇒ Tayler instability

Order of magnitude of the critical field (Auriere et al. 2007)

magnetic forces react just on time to avoid \(B_\phi > B_{pol} \)

\(\Rightarrow \quad B_c = \left(4\pi \rho\right)^{1/2} r\Omega \)
A scenario for the Ap magnetic lower bound and the magnetic desert

\vec{B} stability in a differentially rotating star (e.g. Spruit 1999)

- Strong B suppress differential rotation and reaches stable configurations
- Weak poloidal field $B_p \Rightarrow$ strong azimuthal field $B_\phi \Rightarrow$ Tayler instability

Order of magnitude of the critical field (Auriere et al. 2007)

magnetic forces react just on time to avoid $B_\phi > B_{pol}$

$\Rightarrow \quad B_c = (4\pi \rho)^{1/2} r\Omega$
Two key features of the Auriere et al. 2007 scenario

- The field lower bound increases with rotation
- The gap opens due to strong polarity cancellation of the destabilized field
A scenario for the Ap magnetic lower bound and the magnetic desert

Two key features of the Auriere et al. 2007 scenario

- The field lower bound increases with rotation
- The gap opens due to strong polarity cancellation of the destabilized field
Conclusions

Seismology of rapidly rotating stars

- p-modes are relatively well understood
- space photometry data flux
- amplitudes are basically unknown
- rotation is poorly constrained ($v \sin i$)

Intermediate-mass star magnetism

- a new observational view
- renew interest in modelling
- Vega-like magnetism hard to study
- magnetic fields are hard to model

Magnetism vs seismology

- Vega magnetic field has been found looking for Vega pulsations
- rotational modulation of the lightcurve (Balona 2011, 2012)

Progress towards the study of typical i.e. rapidly rotating, non-strongly chemically peculiar intermediate-mass stars