THE DYNAMICAL PROPERTIES OF MERGERS

BARRY ROTHBERG (SPACE TELESCOPE SCIENCE INSTITUTE)
How do we go from:

To:
And what is the end-product?
OUTLINE

1. Stars, Dissipation, Central Densities
2. “Fundamental” Correlations
3. Rotation or Anisotropy?
4. Final Thoughts
Toomre Hypothesis (TT’72, T’77):

- Mergers between two spiral galaxies produces an elliptical galaxy
- The Merger occurs quickly
- Interaction “stokes the furnace,” dredging “fuel” and triggering intense star-formation

Important Physics:

- **Tidal Friction:** energy transferred from the orbits produces tidal features.
- **Orbital Decay:** transfer of energy leads to breaking and orbital decay, eventually forcing the objects to merge.
- **Violent Relaxation:** Potential of the system changes due to encounter. Stars are scattered, some gain energy, some lose. End result is *approximately* an $r^{1/4}$ stellar distribution.
- **Dissipation:** Gas is funneled to the barycenter of the merger. Gas can trigger star-formation. Gaseous inflow can also form a new central gaseous disk.
- **Phase Mixing:** Once correlated orbits are altered. Over time, stars with different periods “smooth” out structure. Timescale ~ 1+ Gyr after the merger.
Properties of Early-Type Galaxies

© 1972. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Absolute Magnitudes of E and S0 Galaxies in the Virgo and Coma Clusters as a Function of U - B Color

Allan Sandage
Hale Observatories, Carnegie Institution of Washington,
California Institute of Technology
Received 1972 January 31

© 1977. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Rotation (?) in 13 Elliptical Galaxies
Garth Illingworth
Astronomy Department, University of California, Berkeley
Received 1977 August 12; accepted 1977 September 13

The Kinematic Properties of Faint Elliptical Galaxies
Roger L. Davies,1, 5 George Epstien,1 S. Michael Fall,1, 5 Garth Illingworth,2 and
Paul L. Schechter3
Received 1982 March 23; accepted 1982 August 20

Fundamental Properties of Elliptical Galaxies
S. Djorgovski
Harvard-Smithsonian Center for Astrophysics and Department of Astronomy, University of California, Berkeley

Marc Davis
Department of Astronomy, University of California, Berkeley, and Department of Physics, University of California, Berkeley
Received 1985 May 30; accepted 1985 July 18

© 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A.
The Stellar Distribution

- Violent Relaxation should produce an $r^{1/4}$ distribution for cold and irregular initial conditions; Barnes (1996) pointed out disk-disk mergers shouldn’t automatically produce $r^{1/4}$ profiles.

- Violent relaxation smoothes the transition between the progenitor profiles (bulge+disk) and the outer exponential disk *(what about Sc-Sc mergers?)*

- Dynamics Range is critical: important whether the outer part of SB $\approx r^{1/4}$; Need: 1) Deep observations to sample faint light, 2) wide FOV

- Want to measure the “right” stars in mergers
 - Optical light contaminated by young, hot stars
 - IR - old, late-type stars dominate light - stars which make up majority of mass
51 Advanced Merger Remnants

- $\mu_k \sim 21$ mag/arcsec2 (R>10kpc)
- 0.8" median seeing ~ (100-500pc)
Central Densities

- Original objection, summarized by Gunn (1987): “I do not think you can make rocks by merging clouds.”

- $f \propto L^{-2.35}$ (Carlberg 1986)

- Disk-Disk dissipationless mergers can’t make intermediate mass ($\approx \text{sub } L^* - 1L^*$) ellipticals (Kormendy 1989)

- Very luminous disk-disk mergers could form massive ellipticals – but there is $\sim 10-20\%$ deficit of high phase-space density material in the central regions (Hernquist et al. 1993)
How Do We Justify Invoking Dissipation?

Larson & Tinsley 1978

Wang et al. 1992

Hibbard et al. 1994

Schweizer 1982

Sanders 1988

Goldader et al. 1997

Wang et al. 1992

Hibbard et al. 1994

Whitmore et al. 1999
Dissipation Predictions

- Prediction (MH94,S00) - should observe an upturn in stellar luminosity profile *(had yet to be observed)*

- Dissipation produces a strong starburst which creates a dense stellar core

- Hibbard & Yun (1999) modeled the predicted luminosity profile based on B-band data + observed gas
 - 2/3 mergers will eventually form seamless profile between new+old stars,
 - Arp 220 (ULIRG) might retain an anomalous profile

Inhibitor

Mihos & Hernquist 1994

Springel 2000

Hibbard & Yun 1999
How Does Dissipation Affect the Observables?

- Rothberg & Joseph (2004) found evidence of “excess light” in 1/3 of the 51 K-band light profiles of advanced merger remnants
- HY99 and RJ04 found amount of excess light smaller than predicted
- Luminosity density of mergers higher than typical E/S0s; should fade over time (Rossa et al. 2006)
 - (see poster #26 - Joern Rossa)
- Question remains: Once tidal tails fade and most structure is smoothed away, will Es retain the anomalous stellar profile?
 - (see poster by #18 - Jodie Martin)
Phase-Space

- Hernquist (1993) defined a measure of coarse-grained phase-space density based on observables:
 \[f_{\text{eff}} \equiv \frac{1}{\sigma_0 R_{\text{eff}}^2} \]

- Strong overlap with ellipticals from Pahre (1999). ULIRG/LIRG show statistically notable higher \(f_{\text{eff}} \) than the ellipticals

- Suggests mergers have undergone dissipation

Rothberg & Joseph 2006a
Fundamental Correlations

- Internal motions correlate with luminosity
 - Faber-Jackson (1976) two-parameter: $\sigma \propto L$
 - Djorgovski & Davis (1987) three-parameter: σ, $\langle \mu \rangle$, r_{eff}

- Can use Virial Theorem to derive similar relationship, assuming:
 1) homologous structural parameters
 2) $M/L \propto L$ constant

- Lake & Dressler (1986) used B-band w/MgIb & Ca triplet absorption lines
 - Concluded IR light + “IR” stellar lines (Ca triplet) best combination

- Subsequent studies (Doyon et al. 94; Shier et al. 94, 96; Shier & Fischer 98; James et al. 99; Genzel et al. 01; Tacconi et al. 02; Dasyra et al. 06) have used CO (2.3 μm) & primarily focused on LIRGs/ULIRGs
K-band Fundamental Plane

- **κ-space projection** (Bender et al. 1992)
 - Mass is consistent with E_s over entire mass range
 - M/L drop off

K-band Fundamental Plane for 38 advanced (single-nuclei) merger remnants

- σ measured with Ca triplet

Rothberg & Joseph 2006a
Comparison of Kinematics

- Comparison of σ among various types of galaxies

- In terms of m^*:
 - Rothberg & Joseph 2006a:
 - Total Sample Mean: 1, Median 1.4
 - LIRG/ULIRGs: 0.88
 - Dasyra et al. 2006 LIRGs
 (single nucleus/nuclei < 1kpc separation)
 - Mean 0.63

Rothberg & Joseph 2006a Kinematics from optical spectra, except “Previous LIRG/ULIRG” Studies (CO 2.29µm)
Do we always get the same answer?

- Discrepancy between optical & infrared stellar lines
- Early-type galaxies show $\sigma_{\text{IR}} < \sigma_{\text{optical}}$ (Silge & Gebhardt 2003)
- LIRG/ULIRG merger studies: $m < m^*$
- Lake & Dressler (1986), Rothberg & Joseph (2006a) show mergers (including LIRG/ULIRG) with larger σ
- Silge & Gebhardt compared dust, EWs and structure: disky early-types show largest discrepancy
- CO absorption line is degenerate diagnostic - sensitive to both metal-rich giants and metal-poor red supergiants
- If starburst forms younger stellar population in situ, CO may be detecting a central stellar disk
Mass-Metallicity Relation

- Ellipticals show a strong correlation between mass and metallicity (Tonry & Davis 1981; Terlevich et al. 1981; BBF93)

- Semi-analytical λ-CDM models predict a tight Mg-σ relation (e.g. Kauffman & Charlot 1998)

- Some mergers follow the same trend (Rothberg & Joseph 2006a)

- Offset from FP anti-correlated with line strength; similar results seen by Forbes et al. (1998) & Michard & Prugniel (2004) for peculiar ellipticals

![Graphs showing correlation between mass and metallicity](Rothberg & Joseph 2006a)
Mass-Metallicity Relation: Will the mergers match Es? (and if so, what kind and how can we tell)

- Evolution from starburst --> K+A --> ?
 (see Poster #24 - Thomas Puzia)
- Observed [Mg/Fe] overabundance ([α/Fe] enhancement) in luminous Es
 - 1) merging must occur early in chemical enrichment of parent spirals;
 - 2) $\tau_{\text{burst}} \sim 10^7$ yr
- Howell (2006) - “King Gap” Ellipticals
 - 6 Es selected based on tidal HI debris
 - 2/6 consistent with predictions for a merger origin
How are shape and dynamical support linked with formation?

- Amount of rotation or anisotropy coupled with isophotal shapes (boxy/disky) may provide clues to how elliptical galaxies formed.

- Kormendy & Bender (1996) suggested that isophotal shapes are directly correlated with the presence or absence of dissipation during formation.
What do mergers give us?

- First simulations (e.g. White 1979) predicted $V/\sigma = 0.65$, at that time larger than any observed values in ellipticals

- Boxy ellipticals have been linked with mergers
 (e.g. Binney & Petrou 1985; Governato et al. 1993; Schweizer et al. 1990; Heyl et al. 1994)

- Inclination effects may make it difficult to disentangle boxy & disky
 (e.g. Hernquist 1993; Naab et al. 1999; Naab & Burkert 2003; Gonzalez-Garcia & Balcells 2005)

- How does dissipation affect the orbits?
 - If gas accumulates in the central region, potential well deepens, prolongs violent relaxation phase
 - Deep potential wells restrict range of potential orbital shapes
 (see Barnes 1996)
 - Dissipation of gas (not including star-formation) produces a central gaseous disk – affects isophotes
 (Naab et al. 2006)
 (e.g. Barnes & Hernquist 1996; Barnes 2002)
 - Non-axisymmetry in centers (Jog & Maybhate 2006)

- Rotation Curves: De-coupled cores could be a merger signature
 (e.g. Hernquist & Barnes 1991, Bender & Surma 1992; Koprolyn & Zeilinger 2000)
V/σ Plane

- NGC 1316 $V/σ = 0.64$ (Bosma et al. 1985), places it just above oblate rotator ($ε = 0.2-0.2$)

- Lake & Dressler measured $V/σ$ for three mergers, 0.43, 0.23, 0.58 (NGC 2418, NGC 2919, NGC 2914) –just below or on oblate rotator

- NGC 3640, boxy, bright, fast rotator, possibly triaxial (Prugniel et al. 1988)

- 37 merger remnants show clustering near oblate line, but some have small $V/σ$

- No $V/σ < 0.10$, or $V/σ^* < 0.21$ –Rothberg & Joseph 2006b
 - Dasyra et al. (2006) measured $V/σ$ for a sample of ULIRGs only, similar findings
• **Comparison w/Naab et al (2006) models:**
 - Mergers overlap w/3:1 mass ratio – no gas
 - Models with gas component, but no star-formation consistent with wider range of mergers

• **Observed mergers show properties similar to “forbidden” properties in simulations**
 - bright, slow rotating with disky isophotes
 - this has not been seen (yet?) in ellipticals – projection? Triaxiality?

• **Mergers consistent with both bright E’s & intermediate E’s**

• **REMINDE:** NGC 1316 – boxy isophotes, rotates (Schweizer 1980; Bosma et al. 1985)
Stellar Rotation Curves

- Several observations of Kinematically de-coupled cores (KDC) in Mergers - NGC 3656, NGC 1700 -post merger E (Statler et al. 1995)
- Prolate or triaxial - NGC 3923, shell E (Carter et al. 1998) -possible KDC
- Genzel et al. (2001) show decoupling between stellar & gaseous rotation in Arp 220
Phase Mixing

• How well mixed are mergers?

• Two methods:
 • 1) Unsharp mask – Divide by 3-pixel median mask – Removes small scale fluctuations (left)
 • 2) Residual Image – Subtract best-fit model – good for looking at large scale structure (i.e. tidal tails) – (right)

• Three examples:
 • NGC 455
 • rectangular core (boxy isopotes)
 • residual nearly featureless
 • NGC 3921
 • oval core
 • tidal tails
 • AM 0612-373 –
 • diffuse core
 • “pinwheel” residual known to be feature of disk objects
 • Disky isophotes
 • $\sigma = 303$ km s$^{-1}$
 • $M_K = -25.6$

Rothberg & Joseph 2004
Local Mergers on the Move...

- Quick look at where local mergers lie on Red Sequence/Blue Cloud
 - 16 mergers from Rothberg & Joseph sample
 - 5 LIRGs/ULIRGs
 - $80 \text{ km s}^{-1} < \sigma < 288 \text{ km s}^{-1}$
 - Full range of Sersic values ($1 < n < 10$)

- What would mergers look like at high-z?
- Tidal features remain out to $z \sim 1$ (assuming HDF exposure times)
- At $z > 1.5$ morphologies reflect most active regions (UV knots)
- Photometry fails to recover true global properties, including missing older, evolved (red) stellar population, where most of the mass lies

Hibbard & Vacca 1997

Blanton et al. 2003

Re-plot of Bell et al. 2004 (courtesy of Rachel Somerville)
Final Thoughts: Where does this leave us?

Dissipation is important & necessary for mergers in the local universe

1. The old stellar populations in mergers show nearly the same stellar distribution as elliptical galaxies

2. Signatures of dissipation/starburst found in surface brightness profiles of both mergers and ellipticals

3. Evolution of mass-metallicity relation (mergers --> Es)

4. Spiral-spiral mergers can form both intermediate-mass and some giant ellipticals
 A. Which absorption line do you trust?
 B. *Is V/σ or V/σ* a way to sort origin of brightest Es?*
 C. Isophotal Shapes don’t always match strict boxy-bright-anisotropy or disky-faint-rotation paradigm