Documentation Table


Filter by

Listing Results

Results: 176

SBC Absolute Flux Calibration (ACS ISR 2019-05)

October 17, 2019R. J. Avila et al.
The throughput curves for the imaging modes of the Advanced Camera for Surveys Solar Blind Channel (SBC) have been updated to correct for a 15% -- 30% error in the absolute flux calibration. The offset is removed by adjusting throughput curves of various components of the different observing modes, and bringing synthetic photometry into agreement with observed photometry. The resulting curves show that the detector is more sensitive than previously estimated. The practical result of these changes is that the new zeropoints are fainter than before. In other words, until now, the observed astrophysical fluxes of sources have been overestimated. Updated zeropoints for F122M and F165LP have accuracies of ~4.5%, while the other filters have accuracies better than ~1.7%. New throughput curves and other necessary support files have been delivered to the calibration pipeline so that, from now on, SBC images downloaded from MAST contain the appropriate zeropoints.

Temporal Stability of the ACS/WFC OD-800W LED (ACS ISR 2019-08)

September 16, 2019N.D. Miles and N. A. Grogin
This report summarizes an analysis of the ACS/WFC post-flash LED stability over a ~4.5 year period. We analyze 1,294 post-flash calibration darks generated from January 2015 to July 2019. We find the observed intensity of the LED, relative to the intensity in Jannuary of 2015, to be declining at a rate of ~0.2% per year. We use the resulting fit to the LED signal over time to compute a time-dependent normalization factor for each annual post-flash reference file. This normalization reduces the observed scatter between the post-flash reference files caused by short-term fluctuations in the intensity of the LED. The normalized post-flash reference files are currently available in the HST Calibration Reference Data System (CRDS).

SBC Time-Dependent Sensitivity and L-flats (ACS ISR 2019-04)

September 16, 2019R. J. Avila et al.
The time-dependent and spatial sensitivities of the SBC detector on ACS were measured using observations of the calibration star cluster NGC6681. The sensitivity of the detector declined by up to ~9% since launch, with a rate of 0.5%/year since 2007. New calibration files (IMPHTTAB) were produced, and will be included in the calibration pipeline in order to properly update the photometric zeropoints of every FLT image. The low-frequency L-flats were derived by directly fitting 2D polynomial surfaces to the spatial sensitivity data. The resulting products are smoother than the previous versions, due to the diffrent method of deriving the flats. The corrections in the flats are on the order of ~8%. The overall photometric accuracy is 2.5% (except for F165LP which is 3.3%), after combining the low-frequency L-flats with the high-frequency P-flats to make new LP-flats, and applying the new TDS corrections.

Assessing the Accuracy of Relative Photometry on Saturated Sources with ACS/WFC (ACS ISR 2019-03)

July 30, 2019M. Olaes, S. Hoffman, and A. Bellini
Upon full-well saturation, the pixels on the ACS/WFC CCDs bleed excess charge onto adjacent pixels along their column. For these saturated sources, aperture photometry may report a lower flux than expected. However, this effect can be mitigated by defining an aperture which encompasses all of the pixels which contain the full-well bleed. Here we present an assessment of relative photometry of saturated sources from observations of the globular cluster 47 Tuc. We demonstrate an alternate aperture photometry method that defines a custom aperture for each source by identifying pixels which contain the lost flux. This "aperture+" photometry method obtains >90% accurate photometry of saturated stars out to 3.34+/-0.015 magnitudes brighter than 0.5" circular aperture photometry.

Post-SM4 ACS/WFC Bias II: Temporal Structure in the Prescan Bias Level (ACS ISR 2019-06)

July 16, 2019T.D. Desjardins and H.G. Khandrika
We present a study of the temporal variations in the ACS/WFC bias prescan level following SM4. We found two distinct properties of the bias level over time: 1) a nearly 50 electron loss in bias level in the 3 years immediately following SM4; and 2) periodic behavior in the bias level. A Lomb-Scargle periodogram analysis yielded four distinct periods in the bias level of 364.60, 54.72, 42.19, and 23.84 days. We found similar periods in the temperature of the CCD electronics box replacement (CEB-R), which suggested that small, ambient thermal variations near the electronics were manifesting as fluctuations in observable properties of the WFC CCDs. We connected the observed periods, in decreasing order of period duration, to the orbit of Earth around the Sun, the precession of the ascending node of the HST orbit, and the angle of the telescope. We were not able to explain the origin of the 23.84 day period. Regarding the loss of 50 electrons of bias level, we conjectured that this behavior was the result of changes in the long-term performance of one of the CEB-R components such as the ASIC.

Post-SM4 ACS/WFC Bias I: The Read Noise History (ACS ISR 2019-02)

March 28, 2019T. D. Desjardins
We report on the read noise history of the ACS/WFC readout amplifiers since the repair of the instrument during Servicing Mission 4 in May 2009. We find that readout amplifiers B and C remain well-behaved with a slow increase in the read noise of approximately 0.0035–0.0048 electrons per year. Amplifiers A and D (since its read noise anomaly in January 2013) exhibited periods of instability in read noise with infrequent jumps of several hundredths of an electron, faster than typical increases, and occasional decreases in noise over prolonged periods. We also investigate for the first time the read noise of the ACS/WFC subarray modes both before and after the change to the subarray format in Cycle 24. We find that the subarray modes prior to Cycle 24 had systematically higher read noise values, and the read noise was inversely proportionate to the size of the subarray, i.e., smaller subarrays had higher read noise. After the changes to the subarray readout patterns in Cycle 24, the read noise values in subarray readouts match the full-frame.

The ACS/WFC G800L Grism: I. Long-term Stability (ACS ISR 2019-01)

February 28, 2019N. Hathi et al.
We have obtained new ACS/WFC G800L grism observations of the Wolf-Rayet star WR96, a wavelength calibration target, in HST Cycle 25 (PID: 15401) to evaluate differences, if any, in the basic grism properties compared to the previous calibration data. The past calibration efforts for the ACS/WFC G800L grism were based on observations from 2003. In this ISR, we compare these new observations with the previous (pre-SM4) results to validate various basic grism properties: the length and separation of different grism orders, the X/Y shift between the object position in the direct image and the position of the grism 0th order, the spectral tilt, and the wavelength calibration. Our results qualitatively agree with the previous measurements, and confirm that the wavelength calibration of the ACS/WFC G800L grism is consistent within 1 pixel (∼40 ̊A). In an upcoming ISR, we will use all the existing WR96 ACS/WFC grism data along with a new and improved data analysis technique to refine the wavelength calibration of the ACS/WFC G800L grism.

ACS/WFC Parallel CTE from EPER Tests (ACS ISR 2018-09)

December 20, 2018J. Ryon et al.
We present a new analysis of parallel charge transfer efficiency (CTE) in ACS/WFC over its operational lifetime. We utilize extended pixel edge response (EPER) data to monitor the signal and time dependence of CTE in the WFC CCDs, taking a similar approach to Mutchler & Sirianni (2005). We find that CTE has a power law dependence on signal level,such that CTE is worst for low signal levels and best for high signal levels. We also find that CTE decreases linearly with time. The rate of decrease is higher for low signal levels, but may be flattening in recent data at higher signal levels. Monitoring and comparison to other CTE studies will continue for the rest of ACS’s lifetime.

Focus-diverse, empirical PSF models for the ACS/WFC (ACS ISR 2018-08)

November 26, 2018A. Bellini et al.
Focus variations, primarily due to uneven Sun heating of the telescope tube, have a significant impact on the shape of the ACS/WFC point-spread function (PSF). These variations can be properly accounted for on an image-by-image basis by perturbing the library PSF models (Anderson & King 2006) when many bright, relatively isolated stars are present: a luxury that many HST users do not enjoy. This report presents an exploratory analysis of these focus variations and describes the procedures to obtain focus-diverse, spatially-variable PSF models from flc ACS/WFC images taken with the two most commonly used filters: F606W and F814W. The new PSF models are shown to be superior to the library PSF models, particularly when the focus level is extreme, and provide results comparable to those obtained by PSF-perturbation techniques without the need for populated stellar fields in an image. Future analyses will comprise the construction of focus-diverse PSF models for the several other commonly used filters of the ACS/WFC and their implementation in the hst1pass reduction package.

Mitigating Elevated Dark Rates in SBC Imaging (ACS ISR 2018-07)

October 26, 2018R.J. Avila et al.
We present a new aperture that can be used to mitigate elevated dark rates in SBC imaging modes. The reference pixel of this new aperture is located at (175,185) on the detector. At this location the dark rate remains constant at all temperatures. This aperture is limited to observations of small targets, but visits can span an extended number of continuous orbits. We also present results on the heating and cooling rates of the detector. The length of time that the SBC is enabled affects how long it takes to cool back down to its initial temperature. It takes ~2 hours for the detector to reach a temperature at which the dark rate becomes elevated. Once that threshold is reached, it takes ~6 hours after the detector is turned off for the temperature to go back down to acceptable levels.

Remeasuring the ACS/WFC Absolute Gains (ACS ISR 2018-06)

October 22, 2018T.D. Desjardins and N.A. Grogin
We measure the absolute gains of the ACS/WFC readout amplifiers for the first time since Servicing Mission 4 (SM4) in 2009. Due to effects now known to be present in post-SM4 ACS observations, but which were either unknown or not well-calibrated at the time, we also recalculate the absolute gains from the Servicing Mission Observatory Verification (SMOV) period immediately after SM4 using a subset of the original data. At the 95% confidence level, we find that the gains measured from data obtained in 2017 match those from SMOV data within the uncertainties.

Updates to the CALACS Cosmic Ray Rejection Routine: ACSREJ (ACS ISR 2018-05)

September 28, 2018N.D. Miles et al.
This report presents an analysis of the updated version of the ACSREJ contained in the current release of hstcal and available for download via AstroConda. The updated ACSREJ algorithm remedies a bug that caused the ERR extensions to be underestimated by a factor of 1/√g, where g is the CCD gain. This fix triggered a reprocessing of all ACS/WFC superdarks and consequentially affects all ACS/WFC observations. The effect of the increased error contributed from the superdarks is most pronounced for observations with extremely low background (≤ 2e−). Typical backgrounds in ACS/WFC observations are well above this limit and so for most cases the total noise is still dominated by the amplifier read noise and the sky background. Next, the core algorithm has been updated to use the ERR extensions when performing statistical rejection of cosmic rays, as opposed to an estimate derived from the comparison image. The updates to the rejection algorithm required modifications to be made to the cosmic ray rejection table, CRREJTAB. These updates only affect CR-SPLIT observations and a photometric analysis concludes the changes have no affect on actual sources. Lastly, in order to make the effects of newbias keyword more explicit, it was changed to be readnoise only. This keyword is only used to combine images with EXPTIME = 0 (i.e. bias frames) and as such only affects the generation of the ACS/WFC superbias reference files.

Improving the Pixel-Based CTE-correction Model for ACS/WFC (ACS ISR 2018-04)

August 29, 2018J. Anderson and J.E. Ryon
The pixel-based CTE correction was last constructed for ACS/WFC in 2010 and for WFC3/UVIS in 2013. Each of these instruments has now been in orbit for about twice as long as when the model was last constructed. Since the strength of CTE generally increases linearly with time, similar to the population of warm pixels, it makes sense to revisit the correction now that the effect is twice as strong and there exist twice as many pixels to measure it with. This ISR will demonstrate how we constructed a new model for ACS/WFC and will evaluate the model with on-sky data.

A Minor Contamination Event in May 2017 Affecting the ACS/WFC CCDs (ACS ISR 2018-03)

May 25, 2018S.L. Hoffmann et al
Here we present our investigation of three image artifacts that recently appeared in images from Hubble's Advanced Camera for Surveys (ACS) Wide Field Channel (WFC). We discovered one of the artifacts through visual inspection of a WFC image during an unrelated task. A search of routine calibration data revealed that it, and two additional artifacts, appeared on May 5th, 2017. We named the three image artifacts "flecks" because they looked to be small flecks of material sitting on the surface of the WFC detector in our initial examination. We characterized the flecks by analyzing them in routine calibration images. Due to their small size, we do not believe the flecks will have an impact on science use of ACS/WFC. Finally, while we believe the appearance of the flecks to be an isolated incident, we will continue to monitor ACS/WFC images for new flecks in the future.

ACS/WFC Sky Flats from Frontier Fields Imaging (ACS ISR 2017-09)

April 17, 2018J. Mack, R.A. Lucas, et al
Parallel imaging data from the HST Frontier Fields campaign (Lotz et al. 2017) have been used to compute sky flats for the ACS/WFC detector in order to verify the accuracy of the current set of flat field reference files. By masking sources and then co-adding many deep frames, the F606W and F814W filters have enough combined background signal that errors from Poisson statistics are <1% per pixel. In these two filters, the sky flats show spatial residuals ~1% or less. These residuals are similar in shape to the WFC flat field ‘donut’ pattern, in which the detector quantum efficiency tracks the thickness of the two WFC chips. Observations of blue and red calibration standards measured at various positions on the detector (Bohlin et al. 2017) confirm the fidelity of the F814W flat, with aperture photometry consistent to ~1% across the FOV, regardless of spectral type. At bluer wavelengths, the total sky background is substantially lower, and the F435W sky flat shows a combination of both flat errors and detector artifacts. Aperture photometry of the red standard star shows a maximum deviation of 1.4% across the array in this filter. Larger residuals up to 2.5% are found for the blue standard, suggesting that the spatial sensitivity in F435W depends on spectral type.
LAST UPDATED: 06/13/2019

Please Contact the HST Help Desk with any Questions