Comprehensive Radiation-Hydrodynamic Models for Wolf-Rayet Galaxy Spectra

We propose to compute a grid of radiation-hydrodynamic models of Wolf-Rayet star spectra for implementation in population synthesis models. Guided by stellar evolutionary tracks, we will calculate the wind density structure and iteratively solve the radiative transfer using a modified version of the CMFGEN code. The deliverables are stellar spectra at 0.5 A resolution covering 912 to 3000 A for super-solar to near-zero metallicity. The models will be tested by comparison with ultraviolet archival data. By virtue of their luminosities, strong mass loss and peculiar chemical abundances, Wolf-Rayet stars can make a significant - sometimes the dominant - contribution to the line spectra of star-forming galaxies, in particular in the ultraviolet. The new models will provide synthetic ultraviolet spectra of these stars, with parameters optimized for the population synthesis code Starburst99. The parameter range will cover that encountered in local Wolf-Rayet galaxies, in Lyman-break galaxies at redshift 3 - 5, and in primeval galaxies expected to be observed with JWST. Since Wolf-Rayet stars are related to the most massive stars, calibrating and understanding their tell-tale spectral features is a prerequsite for using them as population probes.Our suite of models will allow us and the astronomical community to tackle a diverse set of astrophysical issues: How do the final stages of massive-star evolution differ in different environments? How important are WR stars for the ionization of the ISM and the primordial IGM? Does the anomalous strength of He II 1640 indicate an IMF enriched in massive stars? Are galaxies with WR features preferred hosts of Type Ib SNe and long GRBs?

More information can be found here!


BACK TO RESEARCH