This week on HST

HST Programs: May 16, 2011 - May 22, 2011

Program Number Principal Investigator Program Title
11613 Roelof S. de Jong, Astrophysikalisches Institut Potsdam GHOSTS: Stellar Outskirts of Massive Spiral Galaxies
12025 James C. Green, University of Colorado at Boulder COS-GTO: QSO Absorbers, Galaxies and Large-scale Structures in the Local Universe Part 2
12063 Sandra M. Faber, University of California - Santa Cruz Galaxy Assembly and the Evolution of Structure over the First Third of Cosmic Time - I
12066 Marc Postman, Space Telescope Science Institute Through a Lens, Darkly - New Constraints on the Fundamental Components of the Cosmos
12100 Marc Postman, Space Telescope Science Institute Through a Lens, Darkly - New Constraints on the Fundamental Components of the Cosmos
12104 Marc Postman, Space Telescope Science Institute Through a Lens, Darkly - New Constraints on the Fundamental Components of the Cosmos
12166 Harald Ebeling, University of Hawaii A Snapshot Survey of The Most Massive Clusters of Galaxies
12169 Boris T. Gaensicke, The University of Warwick The frequency and chemical composition of planetary debris discs around young white dwarfs
12179 Jean-Claude Bouret, CNRS, Laboratoire d'Astrophysique de Marseille The Stellar Winds of Evolved, Braked O-Type Magnetic Oblique Rotators
12182 Tuan Do, University of California - Irvine Measuring the physical properties of the Milky Way nuclear star cluster with proper motions
12188 Jay B. Holberg, University of Arizona Tests of Extreme Physics in Very Cool White Dwarfs
12192 James T. Lauroesch, University of Louisville Research Foundation, Inc. A SNAPSHOT Survey of Interstellar Absorption Lines
12193 Jae-Woo Lee, Sejong University Globular clusters as galaxy building blocks
12196 David J. Radburn-Smith, University of Washington Disk Truncations: Probing Galaxy Formation at the Limits
12210 Adam S. Bolton, University of Utah SLACS for the Masses: Extending Strong Lensing to Lower Masses and Smaller Radii
12228 Glenn Schneider, University of Arizona Probing for Exoplanets Hiding in Dusty Debris Disks: Inner {<10 AU} Disk Imaging, Characterization, and Exploration
12236 Lisa Glass, Dominion Astrophysical Observatory The Nuclear to Global Connection: a Detailed View of Compact Stellar Nuclei in a Complete Sample of Virgo Ellipticals
12254 Adrienne Cool, San Francisco State University Helium-core White Dwarfs and Cataclysmic Variables in NGC 6752: New Clues to the Dynamical Evolution of Globular Clusters
12278 Thomas R. Ayres, University of Colorado at Boulder Advanced Spectral Library Project: Cool Stars
12298 Richard S. Ellis, California Institute of Technology Towards a Physical Understanding of the Diversity of Type Ia Supernovae
12308 Eric M. Monier, State University of New York College at Brockport Cosmic Metallicity from ZnII-Selected QSO Absorption Line Systems Near Redshift z=1.2
12310 Goran Ostlin, Stockholm University LARS - The Lyman Alpha Reference Sample
12320 Brian Chaboyer, Dartmouth College The Ages of Globular Clusters and the Population II Distance Scale
12330 J. Davy Kirkpatrick, California Institute of Technology Spitzer Verification of the Coldest WISE?selected Brown Dwarfs
12365 Junfeng Wang, Smithsonian Institution Astrophysical Observatory A CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies {CHEERS}
12369 Giuseppina Fabbiano, Smithsonian Institution Astrophysical Observatory Constraining the Transient Black Hole {Bh} Low-Mass X-Ray Binary {Lmxb} Population
12448 Arlin Crotts, Columbia University in the City of New York Towards a Detailed Understanding of T Pyx, Its Outbursts and Shell

Selected highlights

GO 12060/12063: Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey

Part of the GOODS/Chandra Deep Field South field, as imaged by HST CANDELS is one of three Multi-Cycle Treasury Program, whose observations will be executed over the next three HST Cycles. It builds on past investment of both space- and ground-based observational resources. In particular, it includes coverage of the two fields of the Great Observatory Origins Deep Survey (GOODS), centred on the northern Hubble Deep Field (HDF) in Ursa Major and the Chandra Deep Field-South in Fornax. In addition to deep HST data at optical and near-infrared wavelengths, the fields have been covered at X-ray wavelengths by Chandra (obviously) and XMM-Newton; at mid-infrared wavelengths with Spitzer; and ground-based imaging and spectroscopy using numerous telescopes, including the Kecks, Surbaru and the ESO VLT. This represents an accumulation of almost 1,000 orbits of HST time, and comparable scale allocations on Chandra, Spitzer and ground-based facilities. The CANDELS program is capitalising on this large investment, with new observations with WFC3 and ACS on both GOODS fields, and on three other fields within the COSMOS, EGS and UDS survey areas (see this link for more details). The prime aims of the program are twofold: reconstructing the history of galaxy formation, star formation and nuclear galactic activity at redshifts between z=8 and z=1.5; and searching for high-redshift supernovae to measure their properties at redshifts between z~1 and z~2. The program incorporates a tiered set of observations that complement, in areal coverage and depth, the deep UDF observations, while the timing of individual observations will be set to permit detection of high redshift SNe candidates for subsequent follow-up.

GO 12320: The Ages of Globular Clusters and the Population II Distance Scale

Hubble Heritage image of the globular cluster, M15 Globular clusters are the oldest structures within the Milky Way that are directly accessible to observation. They are relatively simple systems, with relatively simple colour-magnitude diagrams (albeit with some complexities adduced from recent HST observations, see GO 11233 ). Matching those CMDs against theoretical models allows us to set constraints on the age of the oldest stars in the Galaxy, and hence on the age of the Milky Way and the epoch of galaxy formation. However, the accuracy of those age determinations rest crucially on the accuracy of the cluster distance determinations. The clusters themselves lie at distances of several kpc at best, and tens of kpc at worst; thus, direct trigonometric parallax measurements must await microacrsecond astrometric missions. The classical method of deriving distances is main sequence fitting - using nearby stars, with similar chemical abundances and accurate parallax measurements, to map out the main sequence in absolute units, and then scaling the cluster data to fit. The problem with this method is that metal-poor subdwarfs are rare, so even Hipparcos was only able to obtain accurate distances to a handful of stars. The present program aims to improve the distance measurements by using the Fine Guidance Sensors on HST to determine sub-millarcsecond trigonometric parallaxes to 9 subdwarfs, almost doubling the sample available for MS fitting.

GO 12330: Spitzer Verification of the Coldest WISE-selected Brown Dwarfs

The stellar menagerie: Sun to Jupiter, via brown dwarfs Brown dwarfs are objects that form in the same manner as stars, by gravitational collapse within molecular clouds, but which do not accrete sufficient mass to raise the central temperature above ~2 million Kelvin and ignite hydrogen fusion. As a result, these objects, which have masses less than 0.075 MSun or ~75 M<\sub>Jup, lack a sustained source of energy, and they fade and cool on relatively short astronomical (albeit, long anthropological) timescales. Following their discovery over a decade ago, considerable observational and theoretical attention has focused on the evolution of their intrinsic properties, particularly the details of the atmospheric changes. At their formation, most brown dwarfs have temperatures of ~3,000 to 3,500K, comparable with early-type M dwarfs, but they rapidly cool, with the rate of cooling increasing with decreasing mass. As temperatures drop below ~2,000K, dust condenses within the atmosphere, molecular bands of titanium oxide and vanadium oxide disappear from the spectrum to be replaced by metal hydrides, and the objects are characterised as spectral type L. Below 1,300K, strong methane bands appear in the near-infrared, characteristics of spectral type T. At present, the coolest T dwarfs known have temperatures of ~650 to 700K. At lower temperatures, other species, notably ammonia, are expected to become prominent, and attempts are currently under way to find examples of these "Y" dwarfs. The search is complicated by the fact that such objects are extremely faint instrinsically, so only the nearest will be detectable. Identifying such ultra-ultracool dwarfs was a goal of the WISE satellite mission, which recently completed its all-sky survey. WISE has succeeded in identifying a number of extremely interesting sources, including at least 4 objects that have been confirmed as dwarfs with temperatures lower than 350K. These are among the first examples of confirmed Y dwarfs. The current program is combining WFC3-grism imaging with warm-Spitzer photometry to confirm further candidates.

GO 12448: Towards a Detailed Understanding of T Pyx, Its Outbursts and Shell

Artist's impression of the recurrent nova, RS Oph (by David Hardy) Recurrent novae are generally agreed to be close binary systems, comprising a white dwarf and a companion main sequence star that is overflowing its Roche lobe, leading to period transfers of mass onto the white dwarf surface. The mass transfer episode triggers nuclear ractions, which lead the star increasing significantly in it luminosity. T Pyxidis is one such system, and it exhibited fairly regular outbursts every 20 years between its discovery, in 1890, and 1966. Since then, however, it has been dormant, a prolonged period of quiescence that led to suggestions, earlier this year, that it might either be headed for hibernation, or in the process of accumulating sufficient mass to trigger a type Ia supernova explosion (in about 1 million years). Perhaps prompted by these suggestions (a la Monty Python Mary Queen of Scots radio sketch), T Pyxidis erupted into activity on or around April 15th. The present HST observations are designed to obtain multi-wavelength narrowband images of the illuminated ejecta. Further observations may be obtained at future dates to trace the further evolution of this interesting system.
Past weeks:
page by Neill Reid, updated 2/5/2011