Making the best of the data:
discrete dynamical modelling of Omega Centauri

Laura Watkins
MPIA, Heidelberg

Glenn van de Ven, Remco van den Bosch
Mark den Brok, Alex Büdenbender

Dynamics meets kinematic tracers, Ringberg, 12 April 2012
Omega Centauri
Omega Centauri is interesting
Omega Centauri is interesting

- GCs vs dSphs
Omega Centauri is interesting

- GCs vs dSphs
- dark matter?
Omega Centauri is interesting

- GCs vs dSphs
- dark matter?
- multiple SPs
Omega Centauri is interesting

- GCs vs dSphs
- dark matter?
- multiple SPs
- IMBH?
Omega Centauri is interesting

- GCs vs dSphs
- dark matter?
- multiple SPs
- IMBH?
- lots of good data
some Local Group objects have fantastic data sets

2163 stars
some Local Group objects have fantastic data sets

2163 stars

2295 stars
we bin spatially
we bin spatially

Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)
Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)
binning matches moments

\[P(v) \]

\[v \]
we can incorporate chemical information

Omega Cen metallicity distribution

Johnson & Pilachowski 2010
we don’t want to bin at all
we don’t want to bin at all

\[\mathcal{L}(v_{\text{obs}} \mid \text{model}) \]
we don’t want to bin at all

\[L(v_{\text{obs}} \mid \text{model}, \delta v_{\text{obs}}) \]
we can improve membership probabilities
we can improve membership probabilities

\[L(v_{\text{obs}} \mid \text{model}) \]
we can improve membership probabilities

\[L(v_{obs} \mid \text{model})^p \times L(v_{obs} \mid \text{background})^{1-p} \]
we can improve membership probabilities

$$\mathcal{L}(v_{\text{obs}} | \text{model})^p \times \mathcal{L}(v_{\text{obs}} | \text{background})^{1-p}$$
calculate velocity moments using Jeans models
calculate velocity moments using Jeans models

* fast(er)
calculate velocity moments using Jeans models

- faster
- simpler
calculate velocity moments using Jeans models

- faster
- simpler

assumptions (following JAM models (Cappellari 2008)):
calculate velocity moments using Jeans models

- faster
- simpler

- assumptions (following JAM models \cite{Cappellari2008}):
 - axisymmetric
calculate velocity moments using Jeans models

- fast(er)
- simple(r)

- assumptions (following JAM models (Cappellari 2008)):
 - axisymmetric
 - velocity ellipsoid aligned with cylindrical coordinate system
calculate velocity moments using Jeans models

✔ fast(er)
✔ simple(r)

✔ assumptions (following JAM models (Cappellari 2008)):
 ✔ axisymmetric
 ✔ velocity ellipsoid aligned with cylindrical coordinate system
 ✔ anisotropy constant: $<v_{R}^2> = b <v_{Z}^2>$
calculate velocity moments using Jeans models

✵ fast(er)
✵ simple(r)

✵ assumptions (following JAM models (Cappellari 2008)):
 ✵ axisymmetric
 ✵ velocity ellipsoid aligned with cylindrical coordinate system
 ✵ anisotropy constant: $<v_R^2> = b <v_z^2>$
 ✵ rotation parameter: $<v_\phi> = k \ (<v_\phi^2> - <v_R^2>)^{1/2}$
we have 5 free parameters
we have 5 free parameters

- velocity anisotropy: \(\beta = 1 - \frac{\langle v_z^2 \rangle}{\langle v_R^2 \rangle} \)
we have 5 free parameters

- velocity anisotropy: $\beta = 1 - \frac{\langle v_z^2 \rangle}{\langle v_R^2 \rangle}$
- inclination angle: $i \ (\sim 50^\circ)$
we have 5 free parameters

- velocity anisotropy: $\beta = 1 - \langle v_z^2 \rangle / \langle v_R^2 \rangle$
- inclination angle: i ($\sim 50^\circ$)
- stellar mass-to-light ratio: M/L (~ 2.8)
we have 5 free parameters

- velocity anisotropy: \(\beta = 1 - \frac{<v_z^2>}{<v_R^2>} \)
- inclination angle: \(i \) (~50°)
- stellar mass-to-light ratio: \(M/L \) (~2.8)
- probability of membership, VL sample: \(p_{VL} \) (~1)
we have 5 free parameters

- velocity anisotropy: $\beta = 1 - \langle v_z^2 \rangle / \langle v_R^2 \rangle$
- inclination angle: i (~50°)
- stellar mass-to-light ratio: M/L (~ 2.8)
- probability of membership, VL sample: p_{VL} (~1)
- probability of membership, PM sample: p_{PM} (~1)
we have 5 free parameters

- velocity anisotropy: $\beta = 1 - \langle v_z^2 \rangle / \langle v_R^2 \rangle$
- inclination angle: $i \ (\sim 50^\circ)$
- stellar mass-to-light ratio: $M/L \ (\sim 2.8)$
- probability of membership, VL sample: $p_{VL} \ (\sim 1)$
- probability of membership, PM sample: $p_{PM} \ (\sim 1)$

emcee MCMC Foreman-Mackey et al. 2012
preliminary results
Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)

Ringberg, 12 April 2012

Preliminary results
Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)
Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)

preliminary results
Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)

Ringberg, 12 April 2012
preliminary results

Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)

Ringberg, 12 April 2012
preliminary results

Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)
β: -0.05 ± 0.05
Preliminary Results

- $\beta : -0.05 \pm 0.05$
- $i (~50^\circ) : 48.04^\circ \pm 1.97^\circ$
Preliminary Results

- $\beta : -0.05 \pm 0.05$
- $i (~50^\circ) : 48.04^\circ \pm 1.97^\circ$
- $M/L (~2.8) : 2.90 \pm 0.07$

Graphs:

- Beta distribution
- Inclination distribution
- Mass to Light ratio distribution

Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)

Ringberg, 12 April 2012
preliminary results

- $\beta : -0.05 \pm 0.05$
- $i (\sim 50^\circ) : 48.04^\circ \pm 1.97^\circ$
- $M/L (\sim 2.8) : 2.90 \pm 0.07$
- $p_{VL} (\sim 1) : 1.000 \pm 0.000$
Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)

Ringberg, 12 April 2012

Preliminary Results

- $\beta : -0.05 \pm 0.05$
- $i (~50^\circ) : 48.04^\circ \pm 1.97^\circ$
- $M/L (~2.8) : 2.90 \pm 0.07$
- $p_{VL} (~1) : 1.000 \pm 0.000$
- $p_{PM} (~1) : 1.000 \pm 0.001$
Omegac Cen
wish list

- Omega Cen
 - add more data (less conservative cuts)
wish list

- Omega Cen
 - add more data (less conservative cuts)
 - improved membership probabilities
wish list

- Omega Cen
 - add more data (less conservative cuts)
 - improved membership probabilities
 - chemical tagging
wish list

- Omega Cen
 - add more data (less conservative cuts)
 - improved membership probabilities
 - chemical tagging
 - IMBH?
wish list

Omega Cen
- add more data (less conservative cuts)
- improved membership probabilities
- chemical tagging
- IMBH?
- DM halo?
wish list

- Omega Cen
 - add more data (less conservative cuts)
 - improved membership probabilities
 - chemical tagging
 - IMBH?
 - DM halo?
 - discrete Schwarzschild
wish list

- Omega Cen
 - add more data (less conservative cuts)
 - improved membership probabilities
 - chemical tagging
 - IMBH?
 - DM halo?
 - discrete Schwarzschild
- Local Group dSphs and GCs
wish list

- Omega Cen
 - add more data (less conservative cuts)
 - improved membership probabilities
 - chemical tagging
 - IMBH?
 - DM halo?
 - discrete Schwarzschild
- Local Group dSphs and GCs
- Milky Way
high quality and quantity data sets in the LG
• high quality and quantity data sets in the LG
• analysis usually involves binning
- high quality and quantity data sets in the LG
- analysis usually involves binning
- we are implementing discrete modelling of discrete datasets
杂质

- high quality and quantity data sets in the LG
- analysis usually involves binning
- we are implementing discrete modelling of discrete datasets
 - now using Jeans, later Schwarzschild
high quality and quantity data sets in the LG

analysis usually involves binning

we are implementing discrete modelling of discrete datasets
 now using Jeans, later Schwarzschild

includes improved membership determination and chemical tagging
high quality and quantity data sets in the LG

analysis usually involves binning

we are implementing discrete modelling of discrete datasets
 now using Jeans, later Schwarzschild

includes improved membership determination and chemical tagging

preliminary results looks promising!
Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)
Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)

Ringberg, 12 April 2012
Binned model evolution
Binned model parameters

Making the best of the data: discrete dynamical modelling of Omega Centauri - Laura Watkins (MPIA)