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ABSTRACT

The structure of the inner region of an advection-dominated accretion disk around a nonrotating black
hole is explored by applying asymptotic analysis in the region just outside the event horizon. We assume that
the viscous transport is described by the standard Shakura-Sunyaev prescription throughout the disk,
including the inner region close to the horizon. One of our goals is to explore the self-consistency of this
assumption by analyzing the causality of the viscous transport near the black hole. The effects of general
relativity are incorporated in an approximate manner by utilizing a pseudo-Newtonian gravitational
potential. Analysis of the conservation equations yields unique asymptotic forms for the behaviors of the
radial inflow velocity, density, sound speed, and angular velocity. The specific behaviors are determined by
three quantities, namely, the accreted specific energy, the accreted specific angular momentum, and the
accreted specific entropy. The additional requirement of passage through a sonic point further constrains the
problem, leaving only two free parameters. Our detailed results confirm that the Shakura-Sunyaev viscosity
yields a well-behaved flow structure in the inner region that satisfies the causality constraint. We also show
that the velocity distribution predicted by our pseudo-Newtonian model agrees with general relativity in the
vicinity of the horizon. The asymptotic expressions we derive therefore yield useful physical insight into the
structure of advection-dominated disks, and they also provide convenient boundary conditions for the devel-
opment of global models via numerical integration of the conservation equations. Although we focus here on
advection-dominated flows, the results we obtain are also applicable to disks that lose matter and energy,
provided that the loss rates become negligible close to the event horizon.

Subject headings: accretion, accretion disks — black hole physics — hydrodynamics —
methods: analytical — relativity

1. INTRODUCTION

The advection-dominated accretion flow (ADAF) model
has received a great deal of attention as a possible explana-
tion for the dynamics occurring in X-ray–underluminous,
radio-loud active galactic nuclei (AGNs), which are thought
to contain hot accretion disks (e.g., Narayan & Yi 1994,
1995). Briefly, these models describe the dynamics of gas fed
onto a black hole at very low (significantly sub-Eddington)
accretion rates. Gas accreting at such a low rate is quite ten-
uous, and consequently the ion-electron Coulomb coupling
timescale can exceed the timescale for accretion. Since the
ions absorb most of the energy dissipated via viscosity and
the Coulomb coupling with the electrons is weak, the ions
achieve a nearly virial temperature (Ti � 1012 K) that
greatly exceeds the electron temperature (Te � 109 K),
unless plasma instabilities directly heat the electrons
(Bisnovatyi-Kogan & Lovelace 1997). The tenuous nature
of the gas therefore severely limits the radiative efficiency of
the plasma, and consequently, most of the thermal energy
dissipated by viscosity is advected into the black hole in the
form of hot protons, although outflows may carry some of
this energy away. The resulting X-ray luminosity is far
below the Eddington limit.

In X-ray–bright AGNs, the disk is thin and cool, and the
accretion proceeds in a radiatively efficient manner
(Narayan 2003). This explains the origin of the ‘‘ big blue
bump ’’ in the spectra of typical Seyfert galaxies, along with

the common occurrence of broad emission lines, apparently
formed in the inner region between the last stable orbit and
the event horizon. The high temperatures in ADAF disks
preclude the formation of either the blue bump or the broad
lines. From a theoretical point of view, the reason a given
object chooses one mode of accretion over the other is not
entirely clear. As Narayan (2003) points out, it may be pos-
sible to learn a great deal about how the flow changes char-
acter as a function of luminosity by studying transition
objects such as low-ionization nuclear emission-line regions
(LINERs) and low-luminosity active galactic nuclei
(LLAGNs). Ptak et al. (1998) suggest that the larger charac-
teristic variability timescales observed in these sources com-
pared with brighter Seyfert galaxies may indicate the
presence of central ADAFs, which increase the size of the
emission region relative to more efficient, thinner disks. This
idea is supported by observations of the bright Seyfert 1 gal-
axy IC 4329A performed by Done, Madejski, & Zycki
(2000) using ASCA and RXTE. They note that the iron line
in this source is not as broad as that detected in more
extreme cases such as MCG �6-30-15, where the cool disk
apparently extends down to the last stable orbit. Based on
this observation, they conjecture that in IC 4329A the cool
disk transitions into a central ADAF outside the last stable
orbit and consequently the inner region is too hot to pro-
duce the line emission. The physical nature of the accretion
disk may also vary as a function of time in individual sour-
ces. For example, based on intensive RXTE observations of
the galactic black hole candidate J1550�564, Wilson &
Done (2001) propose that transitions between the low/hard
and high/soft spectral states reflect the appearance and dis-
appearance of an ADAF in the inner region, perhaps as a
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consequence of changes in the accretion rate. There are
indications of similar behavior in some AGNs (e.g., Lu &
Yu 1999).

These observations make it clear that in order to unravel
the complex global structure of the accretion disk, a com-
plete understanding of the physical properties of ADAFs
close to the event horizon is essential. One of the most
important unresolved questions concerns the behavior of
the torque in the inner region, where the material begins to
plunge into the black hole. In the standard thin-disk model,
it is usually assumed that the stress vanishes at the margin-
ally stable orbit (e.g., Frank, King, & Raine 1985). Others
have used causality arguments to suggest that the stress van-
ishes at the transonic point (e.g., Popham &Narayan 1992).
However, several authors have argued based on the results
of magnetohydrodynamical simulations that magnetic
stresses are able to remove angular momentum from the
material in the plunging region (e.g., Reynolds & Armitage
2001; Hawley & Krolik 2001; Agol & Krolik 2000; Gammie
1999). The only model-independent statement that can be
made with absolute certainty is that the horizon itself can-
not support a shear stress. Hence, we view this as the most
conservative possible hypothesis. The proposition that the
viscous torque actually vanishes at some radius outside the
horizon is inevitably model dependent. Following Narayan,
Kato, & Honma (1997), Yuan (2001), and Yuan et al.
(2000), we shall therefore assume here that the torque van-
ishes at the horizon and ask whether self-consistent ADAF
models with this property can be constructed based on the
standard Shakura-Sunyaev viscosity prescription. Our basic
approach is to explore the associated disk structure using
rigorous asymptotic analysis. The validity of the dynamical
results is evaluated by examining the causality of the viscous
transport near the horizon, where all signals must propagate
into the black hole. We also compare the velocity distribu-
tion in the vicinity of the horizon with the predictions of
general relativity. Based on these considerations, we argue
that a self-consistent Shakura-Sunyaev flow can exist in the
inner region, and we present detailed asymptotic solutions
for the disk structure.

The remainder of the paper is organized as follows. In x 2
we briefly review the sequence of models developed to
describe ADAF disks. The conservation equations for one-
dimensional ADAF disks are discussed in x 3. The appropri-
ate inner boundary conditions for ADAF disks are derived
in x 4 by employing asymptotic analysis of the conservation
equations. In x 5 the boundary conditions are used to obtain
global solutions for the physical quantities by numerically
integrating the conservation equations. The exact numerical
solutions obtained are compared with the asymptotic
expressions and also with solutions previously presented in
the literature. The implications of our results for the struc-
ture of advection-dominated accretion disks around black
holes are discussed in x 6.

2. DISK MODELS

The structure of advection-dominated disks has been
explored using a variety of theoretical and computational
approaches. The initial one-dimensional, self-similar
models developed by Narayan & Yi (1994, 1995) incorpo-
rated Newtonian gravity. In later works, the assumption of
self-similarity was relaxed and new one-dimensional models
were developed based on a complete set of conservation

equations (Narayan et al. 1997; Chen, Abramowicz, &
Lasota 1997). These models utilize a pseudo-Newtonian
gravitational potential in order to approximate the effects of
general relativity (Paczyński & Wiita 1980; Abramowicz,
Calvani, & Nobili 1980). Conservation of mass, energy, and
angular momentum is expressed using a set of coupled dif-
ferential equations that are integrated to obtain the inflow
velocity v, the sound speed a, and the angular velocity �, as
functions of radius. The solution of these equations requires
a sufficient number of boundary conditions, imposed either
at the sonic point, the black hole horizon, or the outer
radius of the computational domain. The sonic point is a
critical point for the flow, and the integrationmust therefore
be divided into two regions. One typically solves the equa-
tions by starting at the sonic point with values that satisfy
the critical conditions and then integrating the differential
equations inward toward the horizon and outward toward
larger radii, where the disk is eventually expected to become
thin and cool.

Because of the singularity at the event horizon introduced
by the pseudo-Newtonian potential, direct integration of
the conservation equations toward the horizon using an
explicit method such as a Runga-Kutta algorithm cannot be
used to obtain smooth global solutions. On the other hand,
explicit integration away from the horizon toward the crit-
ical point is stable, and consequently it represents a more
convenient approach to the problem, if the boundary condi-
tions close to the black hole event horizon can be specified.
Another alternative is to employ a relaxation algorithm that
is based on iteration of the numerical solution, with the goal
of minimizing a global error parameter (Press et al. 1986).
Each of these methods requires the availability of a suitable
set of inner boundary conditions describing the physics of
the gas close to the event horizon. However, the boundary
conditions appropriate for this problem have not been pre-
sented previously in the literature. Motivated by the lack of
this crucial information, in this paper we derive the exact
asymptotic forms for the variation of the physical quantities
close to the event horizon by employing asymptotic analysis
based on the differential conservation equations. We shall
specialize to the case of one-dimensional, advection-
dominated flow in the pseudo-Newtonian potential. The
asymptotic results will be used to develop inner boundary
conditions that facilitate the integration of the conservation
equations.

3. CONSERVATION EQUATIONS

We shall focus on the structure of steady, advection-
dominated accretion disks. These disks accrete at well below
the Eddington rate and are therefore so tenuous that radia-
tive cooling is inefficient. Hence, advection-dominated disks
are nearly virially hot and are essentially collisionless.
Moreover, the electrons and protons are likely to possess
distinct temperatures as a result of the low rate of Coulomb
interactions between these species. In this situation, the pro-
tons absorb most of the energy dissipated via viscosity, and
consequently, they possess a much higher energy density
than the electrons. Height-integrated structure equations
for such disks have been derived by Abramowicz et al.
(1988).

In our approach to modeling the disk structure, we will
incorporate the effects of general relativity in an approxi-
mate manner by expressing the gravitational potential per
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unit mass using the pseudo-Newtonian form (Paczyński &
Wiita 1980)

�ðrÞ ¼ �GM

r� rS
; ð1Þ

where rS ¼ 2GM=c2 is the Schwarzschild radius for a black
hole of mass M. This potential gives correct results for the
location of the horizon, the radius of marginal stability, and
the radius of the marginally bound orbit around a nonrotat-
ing black hole (Paczyński & Wiita 1980; Abramowicz et al.
1980). Utilization of equation (1) is convenient because it
facilitates a semiclassical approach to the problem that sim-
plifies the analysis considerably, while maintaining good
agreement with fully relativistic calculations. For this rea-
son, the pseudo-Newtonian potential has been adopted by a
number of authors in their investigations of accretion onto
Schwarzschild black holes (e.g., Matsumoto et al. 1984;
Abramowicz et al. 1988; Chen et al. 1997; Narayan et al.
1997; Hawley & Krolik 2001, 2002; Yuan 1999; Yuan et al.
2000; Reynolds & Armitage 2001). We show in the
Appendix that the relativistically correct energy equation
for a particle freely falling from rest at infinity in the
Schwarzschild metric can be written as

1
2 v

2
r þ 1

2 v
2
’ þ �ðrÞ ¼ 0 ; ð2Þ

where vr and v’ denote the radial and azimuthal compo-
nents of the four-velocity, respectively, and �(r) is given by
equation (1). The Newtonian appearance of equation (2)
can be viewed as one of the primary motivations for intro-
ducing the pseudo-Newtonian potential �(r), although one
needs to keep in mind that the dynamical quantities vr and
v’ introduced in equation (2) are four-velocities rather than
conventional velocities. We will return to this point later in
our discussion of the dynamical results.

3.1. Transport Rates

In our subsequent analysis, we will adopt the ‘‘ perfect
ADAF ’’ approximation, meaning that (for now) we shall
completely neglect the escape of energy and matter from the
disk. Modifications associated with the relaxation of this
assumption will be discussed in x 6.4. In the one-
dimensional, steady state ADAF scenario, three quantities
are conserved in the flow, namely, the accretion rate

_MM ¼ 4�rH�v ; ð3Þ

the angular momentum transport rate

_JJ ¼ _MMr2�� G ; ð4Þ

and the energy transport rate

_EE ¼ �G�þ _MM
1

2
w2 þ 1

2
v2 þ PþU

�
þ �

� �
; ð5Þ

where � is the mass density, v is the radial velocity (defined
to be positive for inflow), � is the angular velocity, w ¼ r�
is the azimuthal velocity, U is the internal energy density, P
is the gas pressure, and G is the torque. All quantities re-
present vertical averages over the disk half-thickness H.
We shall assume that the ratio of specifics heats,
� � ðU þ PÞ=U , maintains a constant value throughout the
flow. Note that the transport rates _MM, _JJ, and _EE are all
defined to be positive for inflow. Since these quantities are
conserved, they represent the rates at which mass, angular

momentum, and energy are swallowed by the black hole.
Although we refer to v and w as ‘‘ velocities,’’ we shall see
later that based on their asymptotic behavior close to the
event horizon, these quantities are actually more correctly
interpreted as four-velocities.

3.2. Momentum Equations

The expressions for the transport rates _MM, _JJ, and _EE are
supplemented by equations describing the conservation of
the three components of momentum. In most of the one-
dimensional disk models, the thickness of the disk is com-
puted using the assumption of vertical hydrostatic equili-
brium. While this assumption is probably well satisfied in
the regions of the disk that have subsonic radial velocities, it
may not be very accurate near the horizon because the flow
is supersonic and practically in free fall there. Despite this,
the hydrostatic assumption is routinely used to describe the
entire disk, including the supersonic region (e.g., Chen et al.
1997; Narayan et al. 1997; Chen & Taam 1993). Since one of
our motivations is to develop a consistent set of inner boun-
dary conditions applicable to ‘‘ standard ’’ ADAF models,
we shall assume for now that the disk half-thickness is given
by the usual hydrostatic prescription,

HðrÞ ¼ b0a

�K
; ð6Þ

where b0 is a dimensionless constant of order unity that
depends on the details of the vertical averaging
(Abramowicz et al. 1988),

aðrÞ � P

�

� �1=2

ð7Þ

represents the isothermal sound speed, and �K(r) denotes
the Keplerian angular velocity of matter in a circular orbit
at radius r in the pseudo-Newtonian potential (eq. [1]),
defined by

�2
KðrÞ �

GM

r r� rSð Þ2
¼ 1

r

d�

dr
: ð8Þ

In x 6.2 we will discuss how our results would be modified if
the assumption of vertical hydrostatic equilibrium in the
supersonic region were replaced with radial free fall.

In a steady state, the comoving radial acceleration rate in
the frame of the accreting gas is expressed by

Dv

Dt
� �v

dv

dr
¼ 1

�

dP

dr
þ d�

dr
� r�2 ð9Þ

The angular momentum transport is treated by relating the
torque G to the gradient of the angular velocity � using the
fundamental formula (e.g., Frank et al. 1985)

G ¼ �4�rH��r2
d�

dr
; ð10Þ

where � is the kinematic viscosity.

3.3. Viscosity and Torque

We shall adopt the Shakura-Sunyaev (1973) prescription
for the kinematic viscosity,

� ¼ �a2

�K
; ð11Þ
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where � is a constant. While this is certainly a reasonable
approach in the subsonic region of the flow, the validity of
this prescription in the supersonic region depends on the
microphysical mechanism responsible for generating the
torque in a given situation. In particular, if the angular
momentum is transferred via turbulent blobs of fluid and the
turbulence is subsonic, then the associated torque should
vanish in the supersonic region as a consequence of causality
considerations (e.g., Kato 1994; Narayan 1992; Popham &
Narayan 1992). However, it is not clear a priori whether fluid
turbulence, particles, or magnetic fields (or some combina-
tion of these effects) transport the angular momentum in
ADAF disks. If the transport occurs via particles or fields,
then the causality argumentmentioned above does not apply,
and torques can be generated even in the supersonic region of
the flow between the sonic point and the horizon, although
the torque must certainly vanish at the horizon itself in keep-
ing with general relativistic considerations. In fact, simula-
tions performed by Reynolds & Armitage (2001) suggest that
magnetic fields are able to transfer angular momentum from
material in the plunging region to material in the outer disk.
Following Narayan et al. (1997), we will therefore assume
here that the angular momentum is transferred by some
generic particle/magnetohydrodynamical mechanism, char-
acterized by an effective value for the adiabatic index � in the
range 4=3 < � < 5=3. In this case, we can safely adopt the
standard �-prescription for the kinematic viscosity � given
by equation (11). The self-consistency of this approach will
be evaluated in x 6.3, where the causality of the flow near the
horizon is examined.

3.4. Entropy and Internal Energy

Since we are neglecting the escape of energy from the disk,
the comoving rate of change of the internal energy density
U can be written in the frame of the gas as

DU

Dt
� �v

dU

dr
¼ ��

U

�
v
d�

dr
þ _UUviscous ; ð12Þ

where

_UUviscous ¼ � G

4�rH

d�

dr
¼ ��r2

d�

dr

� �2

ð13Þ

is the viscous energy dissipation rate per unit volume. Com-
bining equations (11), (12), and (13), we can rewrite the
internal energy equation as the entropy equation

v
d

dr
ln

U

��

� �
¼ �

_UUviscous

U
¼ ��ð� � 1Þr2

�K

d�

dr

� �2

: ð14Þ

This equation demonstrates that the flow approaches a
purely adiabatic behavior (U / ��) wherever the viscous
dissipation rate _UUviscous=U vanishes. If the gas is in local
thermodynamic equilibrium, then the viscous heating is a
quasi-static process, and in this case the flow is isentropic
wherever the dissipation vanishes.

We shall find it convenient to express the variation of the
isothermal sound speed, a, using the ‘‘ entropy function,’’

KðrÞ � rva �þ1ð Þ= ��1ð Þ

�K
: ð15Þ

To understand the physical significance of K, we can
combine equations (3), (6), (7), and (15) to show that

K��1 / U

��
; ð16Þ

which establishes that K remains constant in regions of the
flow unaffected by dissipation. In particular, if the gas is in
local thermodynamic equilibrium, then we can use equation
(16) to demonstrate that the value of K is related to the
entropy per particle S by (Reif 1965)

S ¼ k lnK þ c0 ; ð17Þ

where c0 is a constant that depends only on the composition
of the gas but is independent of its state. Note that the rela-
tion between K and S in equation (17) may be violated in an
ADAF because the gas is collisionless, and it is uncertain
whether collective processes can establish a Maxwell-
Boltzmann distribution. However, in any case K itself is
unambiguously defined by equation (15). By comparing
equations (14) and (16), we can show that the radial
derivative ofK is given by

v
d lnK

dr
¼ �

_UUviscous

ð� � 1ÞU ¼ ��r2

�K

d�

dr

� �2

: ð18Þ

This result confirms that K remains constant in regions of
the flow that are not subject to dissipation. We will employ
equation (18) in x 4.4, where we derive the asymptotic solu-
tion for the variation of the entropy function close to the
horizon.

4. ASYMPTOTIC ANALYSIS

The conservation equations presented in x 3 can be solved
as a coupled set to determine the radial profiles of the physi-
cal quantities v, �, a, �, P, andH. Because of the divergence
of the pseudo-Newtonian potential as r ! rS, the event
horizon is a regular singular point of the conservation equa-
tions governing the disk structure. It is therefore possible to
develop Frobenius-style expansions of the physical quanti-
ties around the point r ¼ rS. Rather than developing com-
plete series solutions for the variables, we will employ
asymptotic analysis to determine the dominant behaviors as
r ! rS. As we demonstrate below, this information can be
used to derive explicit boundary conditions applicable very
close to the horizon.

4.1. Stress Boundary Condition

One of the fundamental boundary conditions for black
hole accretion is that the viscous shear stress � must vanish
as r ! rS because particles at different radii become causally
disconnected from each other. The shear stress (force per
unit area) is related to the torqueG by

� ¼ ���r
d�

dr
¼ G

4�r2H
; ð19Þ

and consequently, the vanishing of the stress on the horizon
implies that G ¼ 0 there as well. We therefore conclude
based on equation (4) that

lim
r!rS

�ðrÞ � �0 ¼
_JJ
_MMr2S

; ð20Þ
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which we can rewrite in terms of the azimuthal velocity
w ¼ r� as

lim
r!rS

w ¼ ‘0
rS

; ð21Þ

where

‘0 �
_JJ
_MM

ð22Þ

is the specific angular momentum of the material entering
the black hole. Hence, w approaches a finite value at the
event horizon. Let us consider the physical implications of
this result. Recall that the azimuthal velocity v’̂’ of a freely
falling particle as measured by a stationary observer outside
a Schwarzschild black hole vanishes at the horizon (Shapiro
& Teukolsky 1983). Hence, w cannot represent the true azi-
muthal velocity measured by a static observer in the region
close to the horizon. In the Appendix we demonstrate that w
is actually equal to the azimuthal component of the par-
ticle’s four-velocity, v’, and consequently w possesses a finite
value at the horizon.

4.2. Radial Velocity

Our result for the asymptotic variation of � close to the
horizon (eq. [20]) can be used to derive the corresponding
behavior of the radial inflow velocity v as r ! rS. By using
equation (4) to eliminate the torque in equation (5), we can
rewrite the energy transport equation as

_EE ¼ _JJ�þ _MM
1

2
v2 � 1

2
r2�2 þ �

� � 1
a2 � GM

r� rS

� �
; ð23Þ

where we have also substituted for the potential � using
equation (1). The flow into the black hole must be super-
sonic at the horizon since the radial velocity approaches the
speed of light there. Hence, v4a as r ! rS. Since we have
determined that the angular velocity � approaches a finite
value at the horizon, we can conclude based on equation
(23) that the radial velocity approaches the free-fall velocity
vffðrÞ, i.e.,

lim
r!rS

vðrÞ
vffðrÞ

¼ 1; vffðrÞ �
2GM

r� rS

� �1=2

: ð24Þ

This implies that close to the horizon, v formally exceeds c,
and therefore it cannot represent the actual radial velocity vr̂r

measured by a static local observer in the Schwarzschild
metric. In the Appendix we demonstrate that close to the
horizon, v is actually equal to the radial component of the
four-velocity, vr, for a freely falling particle.

4.3. AngularMomentum and Torque

The vanishing of the stress at the horizon ensures that the
disk experiences differential rotation with d�=dr � 0 at all
radii. We can use this observation along with the require-
ment that � ! �0 as r ! rS to develop the leading-order
behavior of the Frobenius expansion for �(r) about r ¼ rS.
Since r ¼ rS is a regular singular point of the conservation
equations, we can in general write the asymptotic behavior
of�(r) close to the horizon as

�ðrÞ¼: �0 � Aðr� rSÞq ; ð25Þ

where A and q are positive constants and we use the symbol
‘‘¼: ’’ to denote asymptotic equality at the horizon. Equa-
tion (25) is the simplest form that satisfies the requirements
that � ! �0 and d�=dr � 0 as r ! rS. The right-hand side
of equation (25) represents the first two terms of the
Frobenius expansion for �(r), and q is the exponent of the
solution about r ¼ rS (Boyce &DiPrima 1977). We can con-
strain the value of q by examining the associated variation
of the specific angular momentum, ‘ � r2�. Differentiation
of ‘with respect to radius yields

d‘

dr
¼ 2r�þ r2

d�

dr
: ð26Þ

Substituting for � using equation (25), we obtain the
asymptotic relation

d‘

dr
¼: 2r�0 � 2Arðr� rSÞq � Aqr2ðr� rSÞq�1 : ð27Þ

Now, according to equation (4), ‘ ¼ ð _JJ þ GÞ= _MM; therefore,
d‘=dr � 0 at the horizon since the torque G vanishes there.
This in turn implies that d‘/dr has a finite, positive value at
the horizon. Based on this constraint, we conclude that
q � 1, since otherwise d‘/dr would diverge to negative
infinity at the horizon.

The conclusion that q � 1 implies that d�/dr approaches
a finite value as r ! rS. Furthermore, since v and �K each
diverge as r ! rS, we can demonstrate based on equation
(14) that the flow displays a purely adiabatic behavior close
to the horizon (i.e., U / ��). This explicitly confirms that
the dissipation vanishes at the horizon, which is of course
intuitively obvious since the stress vanishes there. Accord-
ing to equation (18), the entropy function K consequently
approaches a finite value at the horizon, i.e.,

lim
r!rS

KðrÞ � K0 ; ð28Þ

where k lnK0 þ c0 represents the specific entropy of the par-
ticles entering the black hole (see eq. [17]).

We can build on our previous conclusions to further
explore the asymptotic behavior of the specific angular
momentum close to the horizon. Combining equations (3),
(4), (10), (11), and (22), we can express the radial derivative
of� as

d�

dr
¼ � v�K ‘� ‘0ð Þ

�r2a2
: ð29Þ

Using this result to substitute for d�/dr in equation (26)
yields a differential equation for ‘,

d‘

dr
¼ 2‘

r
� v�Kð‘� ‘0Þ

�a2
: ð30Þ

As was pointed out earlier, ‘ ¼ ð _JJ þ GÞ= _MM, and therefore
d‘=dr � 0 at the horizon since G ! 0 as r ! rS. It follows
that the local behavior of ‘ close to the horizon must be of
the general form

‘ðrÞ¼: ‘0 þ Bðr� rSÞ� ; ð31Þ

where B and � are positive constants. This represents the
leading behavior of the Frobenius expansion for ‘(r) about
r ¼ rS, and � is the exponent of the solution. Paczyński &
Wiita (1980) imposed equation (31) as an ad hoc expression
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for the global variation of the specific angular momentum
‘(r), whereas we employ it only in the asymptotic limit,
where its validity is fully supported by the conservation
equations. Using equation (31) to substitute for ‘ on the
right-hand side of equation (30) yields in the limit r ! rS

lim
r!rS

v�K

�a2
Bðr� rSÞ� ¼ 2‘0

rS
� ‘00 ; ð32Þ

where

‘00 � lim
r!rS

d‘

dr
: ð33Þ

The constants B, �, and ‘00 are determined as follows. To
evaluate the limit on the left-hand side of equation (32), we
substitute for a using equation (15) and set K ¼ K0 at the
black hole horizon. We have already determined that
the gas approaches radial free fall as r ! rS, i.e.,
v ! ½2GM=ðr� rSÞ�1=2. Using this information, we obtain

lim
r!rS

21=2GM

�r1=2ðr� rSÞ3=2
2r3ðr� rSÞ

K2
0

� � ��1ð Þ= �þ1ð Þ
Bðr� rSÞ�

¼ 2‘0
rS

� ‘00 : ð34Þ

In order to obtain a constant value on the left-hand side in
the limit r ! rS, we must require that the exponents of
ðr� rSÞ add to zero. This yields the result

� ¼ � þ 5

2ð� þ 1Þ : ð35Þ

In Table 1 we list the values of � obtained for several
values of �. Note that for � in the range 4=3 � � � 5=3, we
find that 1:36 � � � 1:25. Hence, � exceeds unity for any
physically acceptable equation of state. Using equation (31)
to evaluate d‘/dr in the limit r ! rS therefore yields

‘00 ¼ lim
r!rS

B�ðr� rSÞ��1 ¼ 0 : ð36Þ

We have therefore proven that d‘=dr ¼ 0 at the black hole
event horizon. By balancing the values on the two sides of
equation (34) in the limit r ! rS, it is straightforward to
show that the constant B is given by

B ¼ �‘0
GM

2

rS

� �1=2 K2
0

2r3S

� �ð��1Þ=ð�þ1Þ

: ð37Þ

Combining equations (31), (35), and (37), we can express

the asymptotic solution for ‘ near the horizon as

‘ðrÞ¼: ‘0 þ
�‘0
GM

2

rS

� �1=2 K2
0

2r3S

� � ��1ð Þ= �þ1ð Þ

r� rSð Þ �þ5ð Þ= 2�þ2ð Þ :

ð38Þ

This relation gives the dominant asymptotic behavior of the
specific angular momentum as a function of r for arbitrary
values of �, �, ‘0, and K0. It is interesting to note that
although Paczyński & Wiita (1980) arbitrarily imposed
equation (31) as a global expression for ‘(r), our numerical
results for � are relatively close to the values they obtain.

Our asymptotic result for ‘(r) has two important implica-
tions. First, since we have found that d‘=dr ¼ 0 at the event
horizon, it follows from consideration of equation (27) that
q ¼ 1 and A ¼ 2�0=rS. Referring to equation (25), we con-
clude that the asymptotic solution for �(r) is therefore given
by

�ðrÞ¼: �0 �
2�0

rS
ðr� rSÞ ð39Þ

in the vicinity of the horizon. Note in particular that
d�=dr ¼ �2�0=rS at the horizon, in contradiction to
Narayan et al. (1997), who erroneously stated that
d�=dr ¼ 0 there. Second, since the torque G is linearly
related to ‘ via G ¼ _MM‘� _JJ ¼ _MMð‘� ‘0Þ, we find that the
asymptotic variation of the torque is given by

GðrÞ¼: �‘0 _MM

GM

2

rS

� �1=2 K2
0

2r3S

� � ��1ð Þ= �þ1ð Þ

r� rSð Þ �þ5ð Þ= 2�þ2ð Þ :

ð40Þ

Based on this expression, we conclude that the radial
derivative of the torque vanishes at the horizon, i.e.,

lim
r!rS

dG

dr
¼ 0 : ð41Þ

This completely new boundary condition is one of the main
results of the paper. The vanishing of the derivative dG/dr
at the horizon supplements the well-known boundary con-
dition G ¼ 0. The physical interpretation of this new
boundary condition and its effect on the structure of the
global flow solutions will be discussed in xx 5 and 6.

4.4. Entropy

Our insights regarding the asymptotic behaviors of ‘, �,
a, and v can be combined to ascertain the asymptotic

TABLE 1

Exponents of Solutions as Functions of �

AngularMomentum

� ¼ ð� þ 5Þ=ð2þ 2�Þ
Sound Speed

� ¼ ð1� �Þ=ð2þ 2�Þ
Pressure

� ¼ ��=ð� þ 1Þ
Density

	 ¼ �1=ð� þ 1Þ
DiskHeight


 ¼ ð� þ 3Þ=ð2þ 2�Þ
Adiabatic Index

�

1.25 ................................. �0.125 �0.625 �0.375 0.875 5/3

1.27 ................................. �0.115 �0.615 �0.385 0.885 8/5

1.30 ................................. �0.100 �0.600 �0.400 0.900 3/2

1.33 ................................. �0.083 �0.583 �0.417 0.917 7/5

1.36 ................................. �0.071 �0.571 �0.429 0.929 4/3

Note.—These are the exponents of ðr� rSÞ for the various physical quantities close to the horizon; see the discussion in the text.
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variation of the entropy function K(r) close to the horizon.
Substituting into equation (18) for d lnK=dr using the
asymptotic free-fall velocity (eq. [24]) along with equation
(8) for�K gives the leading behavior

d lnK

dr
¼: �

4��2
0

GM

rS
2

� �1=2
ðr� rSÞ3=2 ð42Þ

near the horizon, where we have also used the fact that
d�=dr ¼ �2�0=rS at r ¼ rS. Integration of equation (42)
with respect to radius yields for the asymptotic behavior of
K(r) the solution

KðrÞ¼: K0 1�
8��2

0

5GM

rS
2

� �1=2
r� rSð Þ5=2

� �
ð43Þ

in the vicinity of the horizon. Note that K ! K0 at the hori-
zon as required, although the radial dependence is very
weak, reflecting the gradual disappearance of viscous dissi-
pation as r ! rS. The flow is therefore essentially isentropic
close to the horizon.

4.5. Sound Speed and Inflow Velocity

We have shown that v approaches the radial free-fall
velocity vff ¼ ½2GM=ðr� rSÞ�1=2 near the horizon. While
this result is certainly valid in the limit r ! rS, we may strive
to obtain a more precise formula for v by employing the
insights we have obtained in our study of the local varia-
tions of the specific angular momentum ‘ðrÞ ¼ r2�ðrÞ and
the entropy function K(r) close to the horizon. Based on
equation (23), we can express the energy per unit mass
transported through the disk as

�0 �
_EE
_MM
¼ v2

2
� ‘2

2r2
þ ‘0‘

r2
þ �

� � 1
a2 � GM

r� rS
; ð44Þ

where ‘0 � _JJ= _MM is the accreted specific angular momentum.
Since _EE and _MM are conserved, it follows that �0 represents
the energy per unit mass swallowed by the black hole.

Close to the horizon, the viscous dissipation vanishes,
and K ! K0. We can therefore use equation (15) to express
the variation of the isothermal sound speed a in the vicinity
of the horizon as

aðrÞ¼: K0�K

rv

� � ��1ð Þ= �þ1ð Þ
: ð45Þ

We also know that ‘ ! ‘0 as r ! rS. Using this condition
along with equation (45), we can rewrite equation (44) as
the asymptotic expression

�0 ¼
: v2

2
þ

‘20
2r2

þ �

� � 1

r2v2

K2
0�

2
K

� � 1��ð Þ= 1þ�ð Þ
� GM

r� rS
: ð46Þ

This nonlinear relation governs the variation of the inflow
velocity vðrÞ close to the horizon. In general, it must be
solved numerically to determine v for given values of ‘0, K0,
�0, and r. However, as an alternative to numerical root find-
ing, we can seek an asymptotic, analytical solution for vðrÞ
by expanding equation (46) in the small parameter g(r),
defined by

v2ðrÞ � v2ffðrÞ 1þ gðrÞ½ � : ð47Þ

Very close to the horizon, the velocity approaches free fall;
therefore, we must have gðrÞ ! 0 as r ! rS. Using equation

(47) to substitute for v2, we can linearize the factor in
parentheses in equation (46) to obtain

�0 ¼
: gv2ff

2
þ

‘20
2r2

� �

� þ 1

r2v2ff
K2

0�
2
K

� � 1��ð Þ= 1þ�ð Þ
1þ �

1� �
þ g

� �
:

ð48Þ

Solving this equation for g(r) yields the asymptotic result

gðrÞ¼:
2�0r2 � ‘20 � ð� þ 1Þf ðrÞ
r2v2ffðrÞ � ð� � 1Þf ðrÞ

; ð49Þ

where

f ðrÞ � 2�r2

�2 � 1

K2
0

2r3 r� rSð Þ

� � ��1ð Þ= �þ1ð Þ

: ð50Þ

Note that the function f(r) diverges as r ! rS, but it does so
much more slowly than v2ffðrÞ, and consequently gðrÞ ! 0 at
the horizon as required. Equations (47), (49), and (50) pro-
vide a useful asymptotic representation for the inflow
velocity vðrÞ that describes the first-order correction to
purely free-fall behavior close to the horizon.

By combining equations (8), (45), and (47), we can show
that the asymptotic solution for a(r) is given by

aðrÞ¼: K2
0

2r3

� ���

½1þ gðrÞ��ðr� rSÞ� ; ð51Þ

where

� � 1� �

2ð� þ 1Þ : ð52Þ

The dominant behavior as r ! rS is a / ðr� rSÞ�. The expo-
nent � is negative, and therefore a diverges at the horizon,
albeit much more slowly than v, which approaches
vff / ðr� rSÞ�1=2.

We can also easily determine the leading behavior of the
disk half-thickness H(r) close to the horizon by combining
the hydrostatic relationH ¼ b0a=�K with equations (8) and
(51), which yields

HðrÞ¼: b0
c

K2
0

2r3

� ���

1þ gðrÞ½ �� 2r

rS

� �1=2

ðr� rSÞ
 ; ð53Þ

where c is the speed of light and


 � � þ 3

2ð� þ 1Þ : ð54Þ

As r ! rS, the dominant behavior isHðrÞ / ðr� rSÞ
. Since
the flow becomes adiabatic close to the horizon, we can use
equations (7) and (51) to show that the dominant asymp-
totic forms for the pressure P and the mass density � are
given by

PðrÞ / ðr� rSÞ�; �ðrÞ / ðr� rSÞ	 ; ð55Þ

where

� � � �

� þ 1
; 	 � � 1

� þ 1
: ð56Þ

Table 1 includes values for the exponents �, 
, �, and 	
obtained for several different values of the adiabatic index
�. Note that 
 � 1, indicating that H is roughly
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proportional to r� rS. Hence, the disk has zero thickness
(i.e., a cusp) at r ¼ rS, reflecting the fact that the gas pressure
is unable to support the disk against the strong gradient of
the gravitational potential as the matter approaches the
horizon. This particular behavior is a manifestation of the
assumption of vertical hydrostatic equilibrium. In x 6.2 we
explore the consequences of replacing this assumption with
radial free fall close to the horizon.

Equations (47) and (51) provide extremely accurate
asymptotic solutions for vðrÞ and a(r), respectively. Taken
together, equations (38), (43), (47), and (51) completely
determine the nature of the flow close to the horizon in
terms of the three free parameters ‘0, K0, and �0, which des-
cribe the specific angular momentum, the specific entropy,
and the specific energy of the particles entering the black
hole, respectively. As discussed in x 5, the requirement of
smooth passage through a critical point imposes an addi-
tional constraint that effectively reduces the number of free
parameters from three to two. The asymptotic results we
have derived in this section can be used to define boundary
conditions applicable close to the event horizon that serve
as the basis for numerical simulations of the global structure
of advection-dominated disks. In x 5 we perform global disk
structure calculations and compare the numerical solutions
obtained with our asymptotic expressions in the vicinity of
the horizon.

5. GLOBAL FLOW SOLUTIONS

The various differential and algebraic conservation
equations may be solved numerically to determine the
profiles of v, a, and ‘ ¼ r2�. Several methods are available
to solve the coupled system of equations, such as explicit
integration using a Runga-Kutta solver, or the utilization
of a global, iterative relaxation method (e.g., Press et al.
1986). Each of these techniques requires the imposition of
boundary conditions at the edges of the computational
domain. The new asymptotic relations derived in x 4 can
be applied at a radius just outside the horizon to provide
the inner boundary conditions needed to compute global
solutions for the disk structure. Before attempting to solve
the computational problem to determine the disk proper-
ties, it is worthwhile to review the critical nature of the
conservation equations.

5.1. Dynamical Equation and Critical Conditions

Black hole accretion flows are in general transonic, and
consequently the computational domain can be broken into
two regions, one above the sonic radius and one below it.
Successful global solutions must pass smoothly through the
sonic point, which is a critical point for the flow. In order to
explore the critical nature of the flow, it is convenient to
derive a dynamical equation based on themass, momentum,
and energy conservation equations. As a preliminary step,
we can use equations (3), (6), and (7) to express the density �
in terms of v, r, and P as

� ¼
_MM�K

4�rvb0

� �2
1

P
: ð57Þ

Using this relation to eliminate � in the entropy equation
(14), we can derive an equation for the pressure derivative

dP/dr. The result obtained is

� þ 1

2�

d lnP

dr
þ 1

r
þ d ln v

dr
� d ln�K

dr
¼ ��ð� � 1Þr2

2�v�K

d�

dr

� �2

:

ð58Þ

This can be used to eliminate the pressure derivative in the
radial momentum equation (9) to yield the dynamical
equation

v2

a2
� 2�

� þ 1

� �
d ln v

dr
¼ ‘2 � ‘2K

a2r3
þ 2�

� þ 1

3

r
� d ln ‘K

dr

� �

� � � 1

� þ 1

� �
v‘Kð‘� ‘0Þ2

�a4r4
; ð59Þ

where

‘KðrÞ � r2�KðrÞ ¼
ðGMÞ1=2r3=2

r� rS
ð60Þ

denotes the specific angular momentum of particles in circu-
lar, Keplerian orbits at radius r, and we have also used equa-
tions (8) and (29). Equation (59) agrees with equation (2.16)
of Narayan et al. (1997). Global flow solutions can be
obtained by integrating simultaneously the two coupled dif-
ferential equations (30) and (59), which govern the functions
‘(r) and vðrÞ, respectively. This is similar to the procedure
followed by Narayan et al. (1997), except that they included
an additional differential equation for a(r), based on the
entropy equation (14). However, this extra differential equa-
tion is not necessary because the energy flow rate _EE is con-
served when radiative losses are neglected, as assumed in the
ADAF scenario (Molteni, Gerardi, & Valenza 2001). This
fact allows us to solve for a as an algebraic function of v, ‘,
and r using equation (44), which yields

a2 ¼ � � 1

�
�0 �

v2

2
þ ‘2

2r2
� ‘0‘

r2
þ GM

r� rS

� �
: ð61Þ

Critical points occur where the numerator and denomina-
tor in equation (59) for d ln v=dr vanish simultaneously. This
yields the critical conditions

v2

a2
� 2�

� þ 1
¼ 0 ; r ¼ rc ; ð62Þ

‘2 � ‘2K
a2r3

þ 2�

� þ 1

3

r
� d ln ‘K

dr

� �
� � � 1

� þ 1

� �
v‘Kð‘� ‘0Þ2

�a4r4
¼ 0 ;

r ¼ rc ; ð63Þ

where rc is the critical radius. Global solutions must pass
through a critical point; therefore, equations (61), (62), and
(63) can be used to interrelate the six quantities (rc, vc, ac, ‘c,
�0, ‘0), where vc, ac, and ‘c denote quantities measured at the
critical radius r ¼ rc. We can integrate the system of equa-
tions (30) and (59) away from the critical point, either
toward large radii or toward the horizon. However, because
of the nature of the critical point, we cannot begin the inte-
gration precisely at r ¼ rc. We must therefore employ
l’Hôpital’s rule to evaluate dv=dr at the critical point and
then perform a linear extrapolation to offset the starting
conditions slightly in radius (Molteni et al. 2001; Chen &
Taam 1993; Chen et al. 1997). This procedure involves the
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solution of a quadratic equation for the critical value of
dv=dr. In our application, the negative, real root gives the
value for the derivative at the critical point.

5.2. Disk Structure Calculations

In order to illustrate the utility of the asymptotic relations
developed in x 4, we shall perform several calculations of the
disk structure based on explicit integration of the differential
equations. Since there are two coupled differential equations
in the system, there are two linearly independent local solu-
tions around the singular point at the horizon. Only one of
the local solutions is physically acceptable, and this is the
solution that we have obtained asymptotic representations
for in x 4. Explicit integration of the system of equations
from the critical point toward the horizon is unstable
because in general it is impossible to avoid exciting the
second, linearly independent solution, which displays an
unphysical behavior as the gas approaches the horizon.
While it is an open question whether shocks supported by a
‘‘ centrifugal barrier ’’ exist in black hole accretion disks
(e.g., Chakrabarti 1997), our goal here will be to develop
global, shock-free solutions in order to demonstrate the
utility of the boundary conditions derived in x 4 in the
simplest possible manner.

With the availability of the asymptotic expressions for
vðrÞ and ‘(r) derived in x 4, we can employ an explicit, stable
integration in the outward direction, starting at a point just
outside r ¼ rS. In this approach, equations (38) and (47) are
used to set the starting values for ‘ and v, respectively, as
functions of the three constants (�0, ‘0, K0). Numerical inte-
gration of equations (30), (59), and (61) in the outward
direction yields solutions for ‘(r), vðrÞ, and a(r). For given
values of ‘0 and �0, the parameter K0 can be determined by
requiring that the flow pass smoothly through a critical
point, at some radius r ¼ rc. In order to determine ‘0 and �0,
we must therefore supply two additional boundary condi-
tions. These extra conditions are usually imposed by requir-
ing that the disk become Keplerian and geometrically thin
at some arbitrary outer radius (Narayan et al. 1997). How-
ever, it is not completely clear whether ADAF solutions can
merge smoothly with cool thin disks (Yuan 1999; Yuan et
al. 2000). This particular issue is not central to our consider-
ations in this paper, since our focus here is on discussing the
inner boundary conditions appropriate for advection-
dominated black hole accretion. Therefore, in order to
develop numerical examples that illustrate the role of the
inner boundary condition without undue complexity, we
shall simply set �0 ¼ 0 and require that a ! 0 as r ! 1, in
keeping with the self-similar, advection-dominated models
(Narayan & Yi 1994, 1995; Blandford & Begelman 1999;
Becker, Subramanian, & Kazanas 2001). The self-
consistency of the numerical solutions obtained for ‘(r),

vðrÞ, and a(r) using the outward integration is checked by
confirming that at the critical radius, ‘ðrcÞ ¼ ‘c, vðrcÞ ¼ vc,
and aðrcÞ ¼ ac, where the quantities (vc, ac, ‘c, rc) satisfy the
critical conditions given by equations (61), (62), and (63).

The integrations begin at a starting radius, r*, located
close to the event horizon, and proceed in the outward direc-
tion, toward the critical point. In our numerical examples,
we shall work in terms of natural gravitational units
(GM ¼ c ¼ 1, rS ¼ 2), and the starting radius will be given
by r� ¼ 2:001, which is just outside the Schwarzschild
radius. The corresponding starting values for the specific
angular momentum ‘� ¼ ‘ðr�Þ and the inflow velocity
v� ¼ vðr�Þ are computed by applying the asymptotic formu-
las given by equations (38) and (47), respectively, at the
radius r ¼ r�. The starting value for the isothermal sound
speed, a� ¼ aðr�Þ, is determined using equation (61). The
exact solutions for v, a, and ‘ as functions of radius are
obtained by integrating numerically the coupled equations
(30), (59), and (61). The values of the various model parame-
ters are listed in Table 2 for the three models that we con-
sider in detail below. The specific parameter values we have
selected correspond to those adopted by Narayan et al.
(1997) in several of their calculations.

In Figures 1, 2, 3, 4, and 5 we present solutions obtained
by setting ‘0 ¼ 2:6, �0 ¼ 0, � ¼ 0:1, and � ¼ 1:5, which we
refer to as model 1. Note that this value for � represents
approximate equipartition between the gas pressure and the
magnetic pressure. In this scenario, the �-prescription we
have employed for the viscosity (eq. [11]) is valid even within
the supersonic region of the flow. The exact numerical solu-
tion for the inflow velocity vðrÞ is compared with the asymp-
totic solution given by equation (47) in Figure 1. Also
included for comparison are the free-fall velocity distribu-
tion, vffðrÞ ¼ ½2GM=ðr� rSÞ�1=2, and the exact numerical
solution for the isothermal sound speed a(r). The agreement
between the exact solution for vðrÞ and the asymptotic
expression is excellent for 2 < r < 3 and remains reasonably
close all the way out to the critical point, which is located at
rc ¼ 6:132 for this model. Note that v remains well below vff
until the material gets quite close to the horizon. The exact
numerical solution for the sound speed a(r) is compared
with the asymptotic solution (eq. [51]) in Figure 2. The
agreement between these two results is surprisingly close all
the way out to the critical radius. In Figure 3 we plot the
exact numerical solution for the specific angular momen-
tum, ‘ ¼ r2�, along with the asymptotic formula given by
equation (38). The two expressions for ‘(r) merge smoothly
as r ! rS, in validation of our asymptotic analysis. In
Figure 4 we display the global solutions obtained by joining
the numerical results for vðrÞ and a(r) from Figure 1 with
curves generated by integrating in the outward direction
starting from the critical radius r ¼ rc. Note that the global
solutions pass smoothly through the critical point as

TABLE 2

Model Parameters

Model � � �0 ‘0 K0 Kc rc vc ac ‘c r* v� a*

1............ 1.5 0.10 0.0 2.60 0.007173 0.005222 6.132 0.2254 0.2058 2.763 2.001 44.6812 0.5633

2............ 1.5 0.30 0.0 1.76 0.014750 0.007733 10.630 0.1855 0.1694 2.258 2.001 44.6843 0.6507

3............ 1.5 0.03 0.0 3.21 0.001858 0.001634 4.900 0.2084 0.1902 3.256 2.001 44.6802 0.4299
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required. In Figure 5 we display the results obtained for vðrÞ
and a(r) by integrating in the inward direction starting from
the critical point. These are plotted along with the numerical
solutions obtained using the outwardly directed integration
starting close to the horizon (Fig. 1). Near the critical point,
the two sets of solutions agree closely. However, the
inwardly directed integration is unstable, and the denomi-
nator of the dynamical equation (59) vanishes at r � 5,
where v2 ¼ 2�a2=ð1þ �Þ. The existence of this instability
provides one of the main motivations for developing the

inner boundary conditions in x 4, since the availability of
these boundary conditions facilitates the integration in the
outward direction, which is stable.

In Figures 6, 7, 8, and 9 we present results for model 2,
with ‘0 ¼ 1:76, �0 ¼ 0, � ¼ 0:3, and � ¼ 1:5. The exact and
asymptotic solutions for the inflow velocity vðrÞ are com-
pared in Figure 6. Note that two results are indistinguish-
able in the entire region between the horizon and the sonic
(critical) point, which is located at rc ¼ 10:63 for the model
2 parameters. The exact solution for the sound speed a(r)
obtained via numerical integration is compared with the
asymptotic expression (eq. [51]) in Figure 7. In this case, the
two results agree closely for 2 < r < 3, although the agree-
ment deteriorates for re5. The exact numerical solution for

Fig. 1.—Exact numerical solution for the inflow velocity v (solid line)
plotted as a function of radius r for model 1, with � ¼ 0:1 and ‘0 ¼ 2:6.
Included for comparison is the asymptotic solution for vðrÞ given by eq.
(47) (dashed line). The two results agree closely for 2 < r < 3 and remain
similar out to the critical point at rc ¼ 6:132. Also shown are the free-fall
velocity vff ¼ ½2GM=ðr� rSÞ�1=2 (dotted line) and the numerical result for
the sound speed amultiplied by ½2�=ð� þ 1Þ�1=2 (dot-dashed line). The sound
speed curve crosses the numerical solution for v at the critical point.

Fig. 2.—Exact numerical solution for the isothermal sound speed a (solid
line) plotted as a function of radius r for model 1. Parameters for this model
are listed in Table 2. Included for comparison is the analytical, asymptotic
solution for a(r) (eq. [51]; dashed line). The two results agree well between
the starting radius r� ¼ 2:001 and the critical point rc ¼ 6:132.

Fig. 3.—Exact numerical solution for the specific angular momentum
‘ ¼ r2� plotted as a function of radius r (solid line) for model 1. For com-
parison we include the asymptotic solution for ‘(r) given by eq. (38) (dashed
line). The functions merge smoothly as r ! rS and approach the accreted
specific angular momentum, ‘0 ¼ 2:6 (dotted line).

Fig. 4.—Global numerical solutions for the inflow velocity vðrÞ (solid
line) and the sound speed a multiplied by ½2�=ð� þ 1Þ�1=2 (dashed line)
plotted as functions of radius r for model 1. The v and a curves pass
smoothly through the critical point at rc ¼ 6:132, where they cross. The
flow is supersonic for r < rc. The vertical dotted line indicates the location
of the critical point.
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the specific angular momentum ‘ ¼ r2� is plotted in Figure
8 along with the asymptotic result given by equation (38).
The two expressions again display a smooth merger as the
gas approaches the horizon. In Figure 9 we plot complete
global solutions obtained by combining the Figure 6 results
with solutions for vðrÞ and a(r) obtained by integrating away
from the critical point in the outward direction. The global
solutions pass smoothly through the critical point, in satis-
faction of the critical conditions.

It is interesting to compare our results with those
obtained by Narayan et al. (1997). An examination of their

Figures 1, 2, and 3 reveals close agreement with our results.
In fact, their plots of the variation of ‘ near the horizon all
show that d‘=dr ! 0 as r ! rS, which is consistent with our
prediction based on equation (38). This is intriguing consid-
ering the fact that they did not formally adopt boundary
conditions identical to ours in their calculations. In fact,
they state that d�=dr ¼ 0 at the horizon in the discussion
following their equation (2.18), which is obviously incor-
rect. Hence, their treatment of the inner boundary condi-
tions is unclear. Our numerical results also agree with those
of Chen et al. (1997), although these authors do not extend
their calculations to the horizon and instead truncate the
disk at an arbitrary radius rin ¼ 3. For the starting radius in
our outwardly directed integrations, we have set r� ¼ 2:001,
and the corresponding local free-fall velocity there is
vffðr�Þ ¼ 44:7214. The values we obtain for the starting

Fig. 5.—Numerical solutions for the inflow velocity vðrÞ (solid line) and
the sound speed a multiplied by ½2�=ð� þ 1Þ�1=2 (dashed line) plotted as
functions of radius r for model 1. Separate results are indicated for the
inwardly and outwardly directed integrations. Note that the two sets of
results agree near the critical radius at rc ¼ 6:132. However, the inwardly
directed integration fails at r � 5, where v2 ¼ 2�a2=ð1þ �Þ. See the
discussion in the text.

Fig. 6.—Same as Fig. 1, except results correspond to model 2, with
� ¼ 0:3, ‘0 ¼ 1:76, and rc ¼ 10:63. Note that in this case, the asymptotic
solution for vðrÞ is indistinguishable from the exact numerical solution in
the entire region between the horizon and the critical point. Additional
parameters for this model are listed in Table 2.

Fig. 7.—Comparison of solutions for the isothermal sound speed a(r)
obtained in model 2. In this case, the exact numerical solution (solid line)
agrees with the analytical solution (dashed line) close to the horizon but
diverges for re5. The location of the critical radius at rc ¼ 10:63 is
indicated.

Fig. 8.—Same as Fig. 3, except results correspond to model 2
parameters.
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velocity v� displayed in Table 2 are just slightly smaller than
the local free-fall velocity, as a result of centripetal and pres-
sure effects. However, this small difference is crucial for
determining the velocity distribution via the subsequent
integration away from the horizon.

Along with the results associated with models 1 and 2,
Table 2 also includes a summary of the results obtained for
model 3, with ‘0 ¼ 3:21, �0 ¼ 0, � ¼ 0:03, and � ¼ 1:5. It is
interesting to compare the values obtained for the entropy
and angular momentum parameters in the three models. In
particular, Table 2 includes results for the entropy function
K(r) (eq. [15]) evaluated at the critical radius, Kc � KðrcÞ, as
well as at the horizon, K0 � KðrSÞ. Note that K0 always
exceeds Kc, reflecting the fact that viscous dissipation
between the sonic point and the horizon increases the
entropy of the gas. Our results indicate that K0 exceeds Kc

by 91% for � ¼ 0:3, by 37% for � ¼ 0:1, and by 14% for
� ¼ 0:03. This is consistent with the expectation that larger
values of � should be associated with higher dissipation
rates. Also note that the accreted specific angular momen-
tum, ‘0, is always lower than the specific angular momentum
at the sonic point, ‘c, and that the ratio ‘0/‘c decreases with
increasing �, as expected, as a result of the increase in the
magnitude of the viscous torque.

6. DISCUSSION

The development of global solutions for the structure of
advection-dominated accretion disks requires careful con-
sideration of the boundary conditions that apply close to
the black hole event horizon because the horizon always
represents the fundamental inner boundary for any such
calculation. In this paper we have explored the conse-
quences of the pseudo-Newtonian potential for the
asymptotic structure (in the vicinity of the horizon) of
advection-dominated accretion disks incorporating the
Shakura-Sunyaev viscosity prescription. The presence of
the pseudo-Newtonian potential introduces a regular singu-
lar point into the differential conservation equations. In rec-
ognition of this fact, we have employed asymptotic analysis

to determine the leading behaviors of the physical quantities
v, a, ‘, and K close to the horizon. The main asymptotic
results derived in x 4 are given by equation (38) for ‘(r),
equation (43) for K(r), equation (47) for vðrÞ, and equation
(51) for a(r). These expressions clearly illustrate how the
various physical quantities depend on the three parameters
�0, ‘0, and K0, denoting the accreted specific energy, the
accreted specific angular momentum, and the accreted
specific entropy, respectively.

The analytical, asymptotic relations we have obtained
can be used to provide the inner boundary conditions
needed for simulation of the disk structure. These boundary
conditions are essential whether the computation is per-
formed using an explicit integration or an iterative relaxa-
tion technique. In x 5.2 the new boundary conditions were
used to perform explicit numerical integrations of the
coupled conservation equations in the outward direction,
starting at a point just outside the event horizon and ending
at the critical point. The exact numerical solutions obtained
for v, a, and ‘ were compared with the corresponding ana-
lytical expressions derived in x 4. The agreement between
the two sets of solutions is remarkable, providing positive
confirmation of the validity of our asymptotic analysis and
the resulting boundary conditions. We demonstrate in the
Appendix that the velocity distribution associated with our
pseudo-Newtonian model agrees with general relativity in
the vicinity of the horizon. In the remainder of this section
we will examine a few additional questions related to the
self-consistency of the model.

6.1. Torque Boundary Condition

In our model, the torqueG vanishes at the horizon, rather
than at the radius of marginal stability, rms ¼ 6GM=c2. This
is consistent with simulations performed by Hawley &
Krolik (2001), Agol & Krolik (2000), and Gammie (1999),
who all find that the stress has a finite value at r ¼ rms.
Furthermore, our results demonstrate that any advection-
dominated disk with hydrostatic vertical structure must
have d‘=dr ¼ 0 at the horizon. This in turn implies that the
radial derivative of the torque must vanish there, i.e.,
dG=dr ¼ 0 at r ¼ rS (eq. [41]). This new condition supple-
ments the well-known requirement that G ¼ 0 on the hori-
zon. We show below that this behavior can be understood
as a simple consequence of the adiabatic nature of the flow
close to the horizon. First we combine the fundamental
expression for the torque, equation (10), with the mass con-
servation equation (3) and the Shakura-Sunyaev viscosity
prescription (eq. [11]) to obtain

G ¼ �� _MMa2r2

v�K

d�

dr
: ð64Þ

We have found that close to the horizon, the viscous heating
vanishes and therefore the pressure obeys the adiabatic
relation P / ��, implying that a2 / ���1. Substituting for
� using the mass conservation relation _MM ¼ 4�rH�v, we
find that a2 / ðrHvÞ1�� as r ! rS. In a hydrostatic disk,
H / a=�K, and consequently a / ðrv=�KÞð1��Þ=ð1þ�Þ (see eq.
[45]). Since d�/dr approaches a finite value as r ! rS and v
approaches free fall, we immediately conclude that
G / ðr� rSÞ�, with � ¼ ð� þ 5Þ=ð2þ 2�Þ. This agrees with
our earlier derivation (see Table 1) and confirms that � > 1,
with the resulting implication that dG/drmust vanish at the
horizon. Hence, we have demonstrated that the vanishing of

Fig. 9.—Same as Fig. 4, except results correspond to model 2
parameters. The solution passes smoothly through a critical point
located at rc ¼ 10:63.
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the derivative of the torque at the horizon is a predictable
consequence of the scalings of a and v as r ! rS in standard
ADAF disks.

6.2. Effects of Central Free Fall

In this paper we have focused on the behavior of
advection-dominated disks that are in vertical hydrostatic
equilibrium at all radii because we are interested in develop-
ing inner boundary conditions that are consistent with the
standard ADAF scenario (Narayan et al. 1997; Chen et al.
1997). The boundary conditions and asymptotic behaviors
we have obtained agree well with global ADAF simulations;
therefore, they provide a useful foundation for numerical
calculations of the disk structure. While our approach is a
reasonable strategy from a computational point of view, we
should acknowledge that in reality, the gas will probably
stop responding to vertical pressure forces in the supersonic
region close to the horizon. It is perhaps more likely that the
gas crosses the horizon in nearly radial free fall, withH / r.
From a physical point of view, it is worthwhile to consider
how this alternative central inflow condition would affect
some of the basic conclusions we have reached in this paper.

We have shown quite generally in x 4.3 that the dissipa-
tion rate vanishes as the gas approaches the horizon, and
therefore P / �� and a2 / ���1. This result does not depend
on the assumption of vertical hydrostatic equilibrium. Pro-
ceeding as in x 6.1, we substitute for � using the mass conser-
vation equation (3) and find that, in general, a2 / ðrHvÞ1��

as r ! rS. In the quasi-spherical free-fall region close to the
horizon, the disk half-thickness is given approximately by

H ¼ d0r ; ð65Þ

where d0 is a constant. This implies that as r ! rS, the
variation of the sound speed satisfies

a2 / r2v
� �1��

: ð66Þ

In the free-fall case, it is convenient to define the entropy
function using the alternative form

~KKðrÞ � r2va2=ð��1Þ : ð67Þ

Although this differs from the definition of K(r) used in the
hydrostatic scenario (eq. [15]), by combining equations (3),
(7), (65), and (67), we can confirm that ~KK��1 / U��� , and
therefore ~KK is a linear function of the entropy per particle S
if the disk is in free fall (see eqs. [16] and [17]). Next we
express the asymptotic behavior of ‘(r) close to the horizon
using

‘ðrÞ¼: ‘0 þ ~BB r� rSð Þ ~�� ; ð68Þ

where ‘0 is the accreted specific angular momentum and the
constants ~BB and ~�� are analogous to the hydrostatic con-
stants B and � appearing in equation (31). Following the
same steps as in x 4.3, we now obtain

lim
r!rS

v�K

�a2
~BBðr� rSÞ

~�� ¼ 2‘0
rS

� ‘00 : ð69Þ

Using asymptotic analysis and requiring that exponents and
coefficients balance on the two sides of this expression, it is
straightforward to show that the solutions for ~BB and ~�� are

given by

~�� ¼ � þ 2

2
; ~BB ¼ 81=2�‘0rS

c~KK0

~KK0

cr
5=2
S

 !�

; ð70Þ

where c is the speed of light and

~KK0 � lim
r!rS

~KKðrÞ ð71Þ

denotes the value of the entropy function at the horizon.
Note that ~�� > 1 for all 4=3 � � � 5=3, and consequently
dG=dr ¼ d‘=dr ¼ 0 at the horizon. This is the same conclu-
sion reached in x 4.3 under the assumption of vertical hydro-
static equilibrium, although the exponent ~�� differs slightly
from the hydrostatic exponent � ¼ ð� þ 5Þ=ð2þ 2�Þ.
Hence, the vanishing of the derivative of the torque at the
horizon in ADAF disks is a very general result.

6.3. Causality of Viscous Transport at the Horizon

Numerous authors have pointed out that the diffusive
nature of the angular momentum transport associated with
the Shakura-Sunyaev viscosity prescription � ¼ �a2=�K

can lead to causality violations in accretion disks (e.g., Kato
1994; Narayan 1992). This issue can be most easily under-
stood by considering the evolution of an initially localized
component of the angular momentum distribution, repre-
sented by a 
-function at some arbitrary radius r ¼ r0 and
arbitrary time t ¼ t0. As time proceeds, the distribution will
spread in radius in an approximately Gaussian manner,
implying propagation to infinite distance in a finite time,
which violates causality. This phenomenon has a negligible
effect on the structure of the disk in the outer, subsonic
region because the mean transport velocity for the angular
momentum is typically very small despite the fact that an
infinitesimal portion of the signal propagates with infinite
speed. However, the question of causality needs to be exam-
ined carefully in the inner, supersonic region, where the
radial inflow velocity vr̂r approaches the speed of light, and
all signals should therefore be advected into the black hole.
In order to address this issue in the context of the ADAF
scenario considered here, it is useful to examine the diffusion
equation governing the angular momentum distribution in
the disk. Following Blandford & Begelman (1999), we write
the time-dependent equation as

@lr2�

@t
¼ @

@r
lr2�v� G
� �

; ð72Þ

where

l � 4�r� ¼
_MM

v
ð73Þ

represents the mass per unit radius in the disk. By combin-
ing equation (72) with equation (10) for the torque G, we
can obtain the alternative form

@L

@t
¼ @

@r
vLþ �

@L

@r
� �L

l

@l

@r
� 2�L

r

� �
; ð74Þ

where

L � lr2� ð75Þ

denotes the angular momentum per unit radius.
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To obtain further insight, we can recast equation (74) in
the form of the Fokker-Planck equation

@L

@t
¼ � @

@r

dhri
dt

L

� �
þ @2

@r2
1

2

d�2

dt
L

� �
; ð76Þ

where the Fokker-Planck coefficients,

dhri
dt

¼ 2�

r
þ @�

@r
þ �

l

@l

@r
� v ;

1

2

d�2

dt
¼ � ; ð77Þ

describe, respectively, the rates of ‘‘ drifting ’’ and ‘‘ broad-
ening ’’ experienced by the initially localized angular
momentum distribution due to diffusion (Reif 1965). We are
interested in evaluating the Fokker-Planck coefficients in
the context of the steady state ADAF disks considered
here, which have l / v�1. In the inner region, close to the
horizon, we have found that v / vff ¼ ½2GM=ðr� rSÞ�1=2
and a / ðr� rSÞð1��Þ=ð2�þ2Þ. Consequently, the Shakura-
Sunyaev viscosity, � ¼ �a2=�K, displays the asymptotic
behavior � / ðr� rSÞ2=ð1þ�Þ in the vicinity of the horizon.
Since � vanishes as r ! rS, it follows that d�2=dt ! 0. One
can also show that the mean transport velocity, dhri=dt,
approaches �v as r ! rS. The vanishing of the ‘‘ broaden-
ing ’’ rate at the horizon implies that the angular momentum
is simply advected into the black hole, and there is no non-
physical transport to infinite distance in finite time. Taken
together, our asymptotic results for the Fokker-Planck coef-
ficients d�2/dt and dhri=dt demonstrate that the transport
of angular momentum at the horizon is causal, in agreement
with general relativity. We have therefore confirmed that, at
least in the context of the ADAF model considered here,
there are no causality violations at the horizon associated
with the Shakura-Sunyaev prescription for the viscosity.
Interestingly, this result remains valid even if the hydrostatic
relation is replaced with the central free-fall condition
discussed in x 6.2.

6.4. Energy andMass Loss

In this paper we have adopted the perfect ADAF approx-
imation by assuming that all of the transfer rates _EE, _JJ, and
_MM are constant. We have therefore neglected the possibility
of radiative losses, as well as outflows of matter and energy.
This contradicts recent observations suggesting that many
low-luminosity X-ray AGNs possess relativistic jets that
originate very close to the event horizon of the central black
hole (Fender 2001; Nagar et al. 2002). Examples include RS
1915+105 (Belloni et al. 1997; Dhawan, Mirabel, &
Rodrı́guez 2000), XTE J1118+480 (Fender et al. 2001),
XTE J1550�564 (Corbel et al. 2001), GS 1354�64
(Brocksopp et al. 2001), and perhaps Cyg X-1 (Stirling et al.
2001). The fact that disks and jets often appear together sug-
gests that the presence of the outflows may be a necessary
ingredient for the accretion to proceed. This possibility has
motivated several investigations into the relationship
between outflows and ADAFs. From a theoretical view-
point, the positivity of the Bernoulli parameter in advec-
tion-dominated flows suggests that the gas in these systems
is gravitationally unbound (Narayan et al. 1997; Narayan &
Yi 1994, 1995). Based on this observation, Blandford &
Begelman (1999) investigated the effects of mass, energy,
and angular momentum loss on the structure of the disk in
the context of a self-similar model incorporating Newtonian
gravity. This approach was extended by Becker et al. (2001)

to describe self-similar disk/outflow systems governed by
the pseudo-Newtonian potential.

Observations of strong radio emission from X-ray–
underluminous AGNs suggest that relativistic particles
abound in the hot plasmas. The typical energy of these par-
ticles is much higher than the average thermal energy of the
gas, implying the presence of an efficient acceleration mech-
anism. In this connection, it is interesting to note that the
low density in advection-dominated disks makes them plau-
sible sites for the acceleration of relativistic particles via
interactions with magnetohydrodynamical waves because
the plasma is so tenuous that ion-ion collisions are unable to
thermalize the energy of the accelerated particles (Becker et
al. 2001; Subramanian, Becker, & Kazanas 1999). Hence, in
the X-ray underluminous AGNs, particle acceleration and
the resulting outflows of unbound particles from the disk
may represent the dominant cooling mechanism, removing
excess energy and thereby allowing accretion to proceed.
Conversely, in the X-ray–bright systems, the efficiency of
particle acceleration in the disk is lower as a result of the
higher density, which tends to thermalize the energy of the
accelerated particles. In these systems, it is the X-ray emis-
sion that removes most of the binding energy. This interpre-
tation helps to explain the observed anticorrelation between
the outflow strength and the X-ray luminosity, as well as the
positive correlation between the X-ray hardness ratio and
the radio emission strength (Celotti & Blandford 2001;
Corbel et al. 2000).

While outflows have not been incorporated into our anal-
ysis, we expect that their inclusion would have little if any
effect on the boundary conditions at the event horizon that
we have derived. This is because the power source for the
outflows would presumably be the viscous dissipation,
which clearly vanishes rather quickly below r ¼ rms. Hence,
the physics in the asymptotic region close to the horizon
should be insensitive to the production of the outflows. In
future work, we plan to utilize our asymptotic relations to
facilitate the development of detailed disk models including
outflows of matter and energy that are self-consistently
coupled with the disk.

6.5. Conclusion

In this paper we have obtained a number of useful analyt-
ical expressions that completely describe the structure (close
to the event horizon) of advection-dominated, pseudo-
Newtonian accretion flows based on the Shakura-Sunyaev
viscosity prescription. The dynamical results depend on
three quantities: the accreted specific energy �0, the accreted
specific angular momentum ‘0, and the accreted specific
entropy k lnK0. In our approach, �0 and ‘0 are treated as free
parameters, and the value of K0 is determined by requiring
that the global solution pass smoothly through a critical
point. The asymptotic expressions derived in x 4 provide a
set of inner boundary conditions that can serve as the basis
for subsequent numerical integration of the conservation
equations. We emphasize that any physically consistent
one-dimensional advection-dominated accretion diskmodel
based on the Shakura-Sunyaev viscosity prescription must
satisfy these boundary conditions. The analytical expres-
sions agree extremely well with the exact numerical solu-
tions out to a few gravitational radii from the horizon.
Hence, our results provide a valid description of the
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essential physics of the accretion process in the vicinity of
the horizon.

We have assumed that the effects of general relativity can
be approximated using the pseudo-Newtonian gravitational
potential. While this is a widely used approximation that
preserves many of the important dynamical characteristics
of flows in the Schwarzschild metric, one may well ask how
the specific results we have obtained here translate into full
general relativity. For example, will the radial derivative of
the torque really vanish at the horizon in the Schwarzschild
metric? Obviously, this question cannot be answered defini-
tively without employing a fully relativistic calculation.
However, we demonstrate in the Appendix that the motions
of particles near the horizon predicted by our pseudo-
Newtonian model are in complete agreement with the actual
motions of freely falling particles in the Schwarzschild
metric. Furthermore, we have established in x 6.3 that the
diffusive transport of angular momentum in our model is
causal in nature at the horizon. This confirms that pseudo-
Newtonian ADAF models incorporating the Shakura-
Sunyaev viscosity prescription can be used to describe the
structure of the disk all the way to the event horizon. We
argue based on these results that the general characteristics
of the asymptotic solutions we have obtained are likely to be
preserved in full general relativity.

The numerical examples presented in x 5 do not include
shocks, which may occur in accretion flows as a result of the

interaction between the gas and a ‘‘ centrifugal barrier ’’
(Chakrabarti 1997). Shocks may also play a role in power-
ing the outflows associated observationally with hot disks
(Yuan et al. 2002). Although shocks were not explicitly con-
sidered in our analysis, we argue that our asymptotic results
should apply equally well whether or not shocks are present
because our results are based on the fundamental physical
processes operative near the horizon, and those processes
are insensitive to the history of the gas. A related question
concerns the relevance of our results in the context of
convection-dominated accretion flows (CDAFs). These are
stationary, convective envelope solutions that technically
have zero accretion rates, although in fact a small amount
of matter is expected to flow into the black hole (Narayan,
Igumenshchev, & Abramowicz 2000). We emphasize that
our basic results should apply in this situation as well
because the gas that enters the black hole must satisfy the
same asymptotic conservation equations, independent of
whether it has passed through a CDAF, a shocked disk, or a
conventional ADAF.

The authors are grateful to the anonymous referee for
helping us to improve the discussion. P. A. B. would also
like to acknowledge several stimulating conversations with
Menas Kafatos, Ken Wolfram, and Demos Kazanas, as
well as generous support from the Naval Research
Laboratory during a portion of the research.

APPENDIX

PSEUDO-NEWTONIAN PARTICLE DYNAMICS

In our approach to modeling the disk structure, we have incorporated the effects of general relativity in an approximate
manner by utilizing the pseudo-Newtonian gravitational potential,

�ðrÞ ¼ �GM

r� rS
; ðA1Þ

which gives correct results for the radius of marginal stability (rms ¼ 6GM=c2), the marginally bound radius (rmb ¼ 4GM=c2),
and the horizon radius (rS ¼ 2GM=c2) around a nonrotating black hole (Paczyński &Wiita 1980; Abramowicz et al. 1980). In
order to understand how the motions of particles in the pseudo-Newtonian potential are related to the exact solutions given
by general relativity, we shall briefly review the dynamics of particles freely falling in the Schwarzschild metric. We begin by
writing down exact expressions for the radial velocity vr̂r and the azimuthal velocity v’̂’ describing the motion of a particle as
measured by a local, static observer in the Schwarzschild geometry. Using equations (12.4.17) and (12.4.18) from Shapiro &
Teukolsky (1983), we obtain

vr̂r ¼ c 1� E

c2

� ��2�
1� rS

r

�
1þ ‘2

c2r2

� �" #1=2
ðA2Þ

and

v’̂’ ¼ c 1� rS
r

� �1=2 ‘c
rE

; ðA3Þ

where E and ‘ denote the particle’s specific energy and specific angular momentum at infinity, respectively. The locally
measured specific energy, Elocal, is related to E by

Elocal ¼ E 1� rS
r

� ��1=2

: ðA4Þ

In terms of the locally measured Lorentz factor,

�local �
Elocal

c2
; ðA5Þ
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the radial component of the four-velocity, vr, measured by a static observer at radius r can be written as

vr � �localv
r̂r ¼ E

c

�
1� rS

r

��1=2

1� E

c2

� ��2�
1� rS

r

�
1þ ‘

c2r2

� �" #1=2
; ðA6Þ

and the locally measured azimuthal component of the four-velocity, v’, is given by

v’ � �localv
’̂’ ¼ ‘

r
: ðA7Þ

We shall now focus on the case of a particle falling from rest at infinity, with E ¼ c2. Note that ‘ can still have an arbitrary
value in this case, since the azimuthal velocity vanishes at infinity for all values of ‘. Our expression for vr now reduces to

v2r ¼
2GM

r� rS
� ‘2

r2
; ðA8Þ

or, equivalently,

1
2 v

2
r þ 1

2 v
2
’ þ �ðrÞ ¼ 0 ; ðA9Þ

where �(r) is the pseudo-Newtonian potential given by equation (A1). Equation (A9) resembles a classical Newtonian energy
equation, except that vr and v’ are four-velocities rather than conventional velocities. This is, in fact, one of the basic
motivations for introducing the pseudo-Newtonian potential. Despite its classical appearance, the result obtained for vr by
solving equation (A9) with v’ ¼ ‘=r is exactly equal to the radial four-velocity of a particle freely falling from rest at infinity in
the Schwarzschild metric. Note that as the particle approaches the event horizon of the black hole, the radial four-velocity
diverges, i.e.,

vrðrÞ ! vffðrÞ �
2GM

r� rS

� �1=2

; r ! rS: ðA10Þ

On the other hand, the azimuthal four-velocity, v’, remains bounded, and we find that for a given value of ‘,

v’ðrÞ !
‘

rS
; r ! rS : ðA11Þ

As the particle approaches the horizon, the limiting values for the physical velocities vr̂r and v’̂’ are given by

lim
r!rS

vr̂r ¼ c ; lim
r!rS

v’̂’ ¼ 0 ; ðA12Þ

which follow from equations (A2) and (A3). Hence, a stationary observer close to the horizon sees the particle falling radially
inward at the speed of light, as expected.

As a consequence of utilizing the pseudo-Newtonian potential to describe ADAF disks, we have found in x 4 that the
asymptotic behavior of the ‘‘ radial velocity ’’ v is given by

v ! 2GM

r� rS

� �1=2

; r ! rS ; ðA13Þ

and the asymptotic behavior of the ‘‘ azimuthal velocity ’’ w ¼ r� is likewise given by

w ! ‘0
rS

; r ! rS ; ðA14Þ

where ‘0 ¼ _JJ= _MM is the specific angular momentum of the material crossing the event horizon. Comparing these expressions
with equations (A10) and (A11), we find that close to the horizon, the quantities v and w, respectively, are exactly equal to the
radial component (vr) and the azimuthal component (v’) of the four-velocity for a particle freely falling in the Schwarzschild
metric.
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