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ABSTRACT

We develop and discuss global accretion solutions for viscous advection-dominated accretion flow (ADAF) disks
containing centrifugally supported isothermal shock waves. The fact that such shocks can exist at all in ADAF
disks is a new result. Interestingly, we find that isothermal shocks can form even when the level of viscous dis-
sipation is relatively high. In order to better understand this phenomenon, we explore all possible combinations
of the fundamental flow parameters, such as specific energy, specific angular momentum, and viscosity, to obtain
the complete family of global solutions. This procedure allows us to identify the region of the parameter space
where isothermal shocks can exist in viscous ADAF disks. The allowed region is maximized in the inviscid case,
and it shrinks as the level of viscous dissipation increases. Adopting the canonical value γ = 1.5 for the ratio of
specific heats, we find that the shock region disappears completely when the Shakura–Sunyaev viscosity parameter
α exceeds the critical value ∼0.27. This establishes for the first time that steady ADAF disks containing shocks can
exist even for relatively high levels of viscous dissipation. If an isothermal shock is present in the disk, it would
have important implications for the acceleration of energetic particles that can escape to power the relativistic jets
commonly observed around underfed, radio-loud black holes. In two specific applications, we confirm that the
kinetic luminosity lost from the disk at the isothermal shock location is sufficient to power the observed relativistic
outflows in M87 and Sgr A∗.
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1. INTRODUCTION

The accretion of matter onto compact objects is the funda-
mental mechanism powering a variety of high-energy astrophys-
ical sources, such as low-mass X-ray binaries, massive black
holes, and active galactic nuclei. Shakura & Sunyaev (1973)
and Novikov & Thorne (1973) laid the foundation for our under-
standing of these sources by developing the first physical models
for geometrically thin accretion disks. These early models did
not treat the pressure and advection terms in the conservation
equations correctly, and furthermore no attempt was made to sat-
isfy the inner boundary conditions at the event horizon. Instead,
the disk was simply terminated at the marginally stable orbit.
The inner regions of these disks were shown to be viscously
and thermally unstable by Lightman & Eardley (1974), and the
model was subsequently improved by Paczyński & Bisnovatyi-
Kogan (1981) and Muchotrzeb & Paczyński (1982) who in-
corporated advection and pressure effects into their models.
Following a similar approach, the general global solution for
accretion in the hydrodynamic limit, including advection, vis-
cosity, and thermal effects, was obtained by Chakrabarti (1990,
1996).

1.1. Advection-Dominated Accretion

The advection-dominated accretion flow (ADAF) model re-
mains a central paradigm in contemporary studies of blackhole
accretion as a possible explanation for the dynamical structure
of sources with significantly sub-Eddington accretion rates (see
Yuan 2007 for a review). The gas in the inner regions of such
disks is quite tenuous, and therefore the plasma radiates very
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inefficiently, leading to high temperatures. At large radii, the
hot ADAF inner region is expected to merge with a cool, geo-
metrically thin Shakura & Sunyaev outer region characterized
by a Keplerian angular momentum profile. Since any global ac-
cretion solution onto a black hole must cross the event horizon
supersonically in order to satisfy the fundamental boundary con-
ditions imposed by general relativity, ADAF accretion disks are
necessarily transonic. Narayan et al. (1997) studied the behavior
of transonic ADAF disks subject to the Shakura–Sunyaev vis-
cosity prescription. The associated asymptotic boundary condi-
tions governing the dynamics close to the event horizon, and the
related physical restrictions on the viscosity prescription, were
examined by Becker & Subramanian (2005) and Becker & Le
(2003). Interest in the ADAF model remains strong, and it has
been the focus of many recent studies. For example, Narayan
& McClintock (2008) have analyzed the properties of ADAF
disks close to the event horizon; Takahashi (2007) has explored
the influence of causal viscosity prescriptions on the structure
of ADAF disks; Ma et al. (2007) have probed the role of mag-
netically induced torques in ADAF disks; and Yuan et al. (2008)
have examined the properties of a simplified global model that
utilizes an approximate form for the radial momentum equation.

1.2. Critical Structure of Transonic Disks

Due to the supersonic nature of the inflow at the event
horizon, any physically achievable flow configuration must
contain at least one critical point, where the flow transitions from
subsonic to supersonic. However, for a given set of incident flow
parameters (e.g., specific energy, specific angular momentum,
and viscosity), the flow may possess multiple critical points
(Chakrabarti 1989a, 1989b, 1990, 1996; Chakrabarti & Das
2004; Le & Becker 2005). This suggests the possible existence
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of global flow solutions with a standing shock wave located
between two critical points. In their early study of viscous,
transonic ADAF disks, Narayan et al. (1997) focused on
global solutions that pass through a single critical point, and
consequently they did not obtain any shocked disk solutions.
The problem of the structure of ADAF disks governed by
the Shakura–Sunyaev viscosity prescription was recently re-
examined by Becker et al. (2008), who demonstrated that
isothermal shocks can exist in such disks even in the presence
of substantial viscosity.

In the present paper, we extend the approach taken by Becker
et al. (2008) by performing a complete analysis of the structure
of viscous ADAF disks containing either single or multiple
critical points. Solutions with multiple critical points may
include a standing shock, if it is possible to satisfy the shock
jump conditions at some radius r∗ between the outer critical
point (at radius r = rout

c ) and the inner critical point (at radius
r = r in

c ). Shocks occur when the accretion flow is impeded due
to the presence of a “centrifugal barrier” situated close to the
horizon. Although such barriers can exist even in viscous disks,
they begin to dissipate as the level of viscosity increases because
of the increasing efficiency of the outward diffusion of angular
momentum. Hence disks with large viscosity parameters are not
expected to possess shocks, and our results confirm this. In the
post-shock region, the flow accelerates toward the black hole,
eventually passing through the inner critical point and crossing
the horizon supersonically.

1.3. Shock Waves in Viscous Disks

The question of the stability of viscous accretion flows con-
taining standing shock waves is currently not resolved. How-
ever, an important new development in the field was provided
by Nagakura & Yamada (2008), who used both linear stabil-
ity analysis and general relativistic hydrodynamical simulations
to investigate the stability properties of shock waves in invis-
cid, advection-dominated accretion flows around Schwarzschild
black holes. When subjected to strong perturbations around the
initial condition, the authors find that the dynamical configu-
ration is stable, in the sense that the shock continues to exist,
although the shock radius may oscillate if the perturbations
are non-axisymmetric. Similar results were obtained by Okuda
et al. (2007). Although these authors do not consider the effect
of viscosity in their work, their conclusions nonetheless support
the general idea that shocks may be able to exist in a stable
configuration in relativistic disks. Consequently their findings
provide a sound theoretical basis for the study of the structure
of shocked, viscous disks developed in the present paper. When
a shocked solution is dynamically possible, we argue based on
the second law of thermodynamics that a shock will form since
shocked-disk solutions possess higher entropy than smooth so-
lutions (Becker & Kazanas 2001).

The study of shock waves in accretion flows around com-
pact objects has been undertaken by a variety of authors us-
ing either analytical methods (Fukue 1987; Chakrabarti 1989a,
1989b, 1990, 1996; Abramowicz & Chakrabarti 1990; Nobuta
& Hanawa 1994; Yang & Kafatos 1995; Yuan et al. 1996; Ca-
ditz & Tsuruta 1998; Kovalenko & Lukin 1999; Das et al. 2001;
Das & Chakrabarti 2004; Le & Becker 2004, 2005, 2007; Yu
et al. 2006; Becker et al. 2008) or numerical simulation (Haw-
ley et al. 1984a, 1984b; Chakrabarti & Molteni 1993; Molteni,
Sponholz, & Chakrabarti 1996; Ryu et al. 1997; Chakrabarti
et al. 2004). The physical configuration of the shock depends
on the detailed microphysics of the dissipation mechanism op-

erating at the discontinuity. The three types of shocks most
frequently studied are (1) Rankine–Hugoniot shocks, (2) isen-
tropic shocks, and (3) isothermal shocks (Chakrabarti 1990;
Abramowicz & Chakrabarti 1990). Rankine–Hugoniot shocks
possess the largest post-shock temperatures because the energy
flux is strictly conserved as the gas crosses the shock. Hence
shocks of this kind are radiatively very inefficient. In an isen-
tropic shock, the entropy generated via dissipation is imme-
diately radiated away, and consequently such shocks display
smaller temperature increases than the Rankine–Hugoniot vari-
ety. In an isothermal shock, the temperature does not increase at
all because all of the dissipated energy and entropy escape from
the flow at the shock location. Hence isothermal shocks repre-
sent the most efficient mechanism for removing energy from the
flow.

Le & Becker (2004, 2005, 2007) demonstrated that the
energy removed from the flow at the isothermal shock location
can be understood physically as a consequence of the first-
order Fermi acceleration of relativistic particles in the disk,
combined with the diffusion and escape of the accelerated
particles through the upper and lower surfaces of the disk.
This approach facilitates the development of a completely
self-consistent, coupled model that simultaneously describes
the dynamical structure of the disk/shock system and also the
energy spectrum of the relativistic particles escaping from the
disk to form the observed jet outflows.

The properties of isothermal shock waves in accretion disks
have been studied previously by Abramowicz & Chakrabarti
(1990), Lu & Yuan (1998), Fukumura & Tsuruta (2004), and
Das et al. (2003). However, the studies cited above all focused on
inviscid flow models, which probably do not adequately describe
real accretion disks. In this paper, we obtain for the first time
detailed dynamical solutions for the structure of ADAF disks
containing isothermal shocks. The remainder of the paper is
organized as follows. In Section 2 we discuss the ADAF model
assumptions, the governing equations, and the critical conditions
for the structure of ADAF disks. We discuss the isothermal
shock jump conditions and examine global accretion solutions
in Section 3, and we explore the properties of the standing shock
and classify the parameter space for shocked accretion solutions
in Section 4. Our dynamical formalism is used to model the
development of the relativistic outflows in M87 and Sgr A∗ in
Section 5, and concluding remarks are presented in Section 6.

2. GOVERNING EQUATIONS

We consider a thin, axisymmetric, viscous advection-
dominated accretion disk structure. The disk is tenuous because
it accretes matter at well below the Eddington rate, and therefore
energy losses due to radiative processes are inefficient. General
relativistic effects are taken into account in an approximate
manner by utilizing the pseudo-Newtonian potential introduced
by Paczyński & Wiita (1980). The self-gravity of the disk is
neglected. Under these assumptions, there are two conserved
quantities in viscous ADAF disks, namely the mass transport
rate

Ṁ = 4πrHρ v, (1)

and the angular momentum transport rate

J̇ = Ṁr2Ω − G, (2)

where r is the radial coordinate, H denotes the disk half-
thickness, ρ is the mass density, v is the (positive) inflow
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velocity, Ω is the angular velocity, and G denotes the torque.
The energy transport rate is given by

Ė = −G Ω + Ṁ

(
1

2
v2 +

1

2
v2

φ +
P + U

ρ
+ Φ

)
, (3)

where vφ = r Ω denotes the azimuthal velocity, P = (γ − 1) U
is the pressure, U is the internal energy density, and Φ represents
the pseudo-Newtonian potential, defined by (Paczyński & Wiita
1980)

Φ(r) ≡ − GM

r − rS

, (4)

for a black hole with mass M and Schwarzschild radius rS =
2GM/c2. This potential successfully reproduces many aspects
of the spacetime geometry around a nonrotating black hole. We
assume that the adiabatic index, γ , maintains a constant value
throughout the flow, and the transport rates Ṁ , J̇ , and Ė are
all defined to be positive for inflow. Under our assumptions,
Ṁ and J̇ are conserved throughout the disk, and therefore they
represent the rates at which mass and angular momentum enter
the black hole, respectively. In general, the energy transport rate
Ė is also conserved, except at the location of an isothermal
shock if one is present in the flow.

The torque G is associated with the gradient of the angular
velocity Ω through the standard relation (e.g., Frank et al. 2002)

G(r) = −4πr3Hρ ν
dΩ
dr

, (5)

where ν is the kinematic viscosity. In the present work, we adopt
the Shakura & Sunyaev (1973) viscosity prescription,

ν(r) = αa2

ΩK
, (6)

where α is a constant, ΩK denotes the Keplerian angular velocity,
defined by

Ω2
K(r) ≡ GM

r(r − rS )2
= 1

r

dΦ
dr

, (7)

and a denotes the isothermal sound speed, given by

a2(r) = P

ρ
. (8)

Combining Equations (1), (2), (5), and (6), we find that the
gradient of the angular velocity can be written as

dΩ
dr

= −vΩK(� − �0)

αr2a2
, (9)

where � ≡ r2Ω denotes the angular momentum per unit mass
for the accreting gas at radius r, and �0 ≡ J̇ /Ṁ is the angular
momentum transport rate per unit mass. Since the torque G
vanishes at the event horizon (Becker & Le 2003), it follows
from Equation (2) that �0 is also equal to the specific angular
momentum of the material entering the black hole. The radial
derivative of � is given by

d�

dr
= 2 r Ω + r2 dΩ

dr
, (10)

which can be combined with Equation (9) to obtain the differ-
ential equation

d�

dr
= 2 �

r
− v�K(� − �0)

αa2r2
, (11)

where the Keplerian specific angular momentum �K is defined
by

�K(r) ≡ r2ΩK(r) = r3/2
√

GM

r − rS

. (12)

The disk half-thickness H is estimated using the standard
vertical hydrostatic relation

H (r) = ar2

�K
. (13)

In a steady state, the comoving radial acceleration rate in the
frame of the accreting gas can be written as

Dv

Dt
≡ −v

dv

dr
= 1

ρ

dP

dr
+

�2
K − �2

r3
. (14)

By eliminating the torque G between Equations (2) and (3) and
utilizing Equation (8), we find that the energy transport rate per
unit mass is given by

ε ≡ Ė

Ṁ
= 1

2
v2 − 1

2

�2

r2
+

�0�

r2
+

γ

γ − 1
a2 + Φ. (15)

Since we are working within the ADAF framework, ε will
remain constant unless a shock is formed in the disk. In this
scenario, the variation of the internal energy density U is
regulated by the adiabatic compression of the gas and the viscous
dissipation in the disk. The comoving rate of change of U can
therefore be written in the frame of the gas as (e.g., Becker &
Le 2003)

DU

Dt
≡ −v

dU

dr
= −γ

U

ρ
v
dρ

dr
+

ρν

r2

(
d�

dr
− 2�

r

)2

. (16)

We can obtain the dynamical differential equation govern-
ing the spatial variation of the inflow velocity v by manipu-
lating the conservation equations as follows. First we combine
Equations (1), (13), and (8) to express the pressure as

P = Ṁa�K

4πr3v
. (17)

Using this relation to substitute for the pressure in Equation (14)
for the radial acceleration, we find that the derivative of the sound
speed a is given by

da

dr
=

(
a2

v2
− 1

)
v

a

dv

dr
− a

�K

d�K

dr
+

3 a

r
+

�2 − �2
K

ar3
. (18)

Next we differentiate Equation (15) and combine the result with
Equation (11) to obtain

dv

dr
= �2 − �2

K

vr3
− 2γ

γ − 1

a

v

da

dr
− �K(� − �0)2

αa2r4
. (19)

By using Equation (18) to substitute for da/dr in Equation (19),
we obtain the differential dynamical equation (e.g., Narayan
et al. 1997)(

v2

a2
− 2γ

γ + 1

)
1

v

dv

dr
= 2γ

γ + 1

(
3

r
− 1

�K

d�K

dr

)

+

(
γ − 1

γ + 1

)
v�K(� − �0)2

αa4r4
+

�2 − �2
K

a2r3
. (20)

In order to obtain the distributions of the flow variables v, a, and
�, we must solve numerically the governing Equations (11), (15),
and (20). This requires consideration of the critical structure of
the flow as discussed below.
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2.1. Critical Conditions

A black hole will swallow matter either from its binary
companion or from the winds of the surrounding stars. At the
outer edge of the disk, the accreting matter has negligible radial
velocity, although it ultimately crosses the event horizon with
a local velocity equal to the speed of light. Hence accretion
flows around black holes must be transonic. The locations where
the flow transitions from subsonic to supersonic are referred
to as critical points. Depending on the parameters describing
the properties of the gas at a large distance from the black
hole, the flow may possess multiple critical points. When this
occurs, it is interesting to investigate the possible existence
of isothermal standing shock waves located between two of
the critical points. The location of the shock, if one exists, is
determined by applying the shock jump conditions. We first
study the critical structure of the transonic flow by rewriting
Equation (20) in the equivalent form

dv

dr
= N

D
, (21)

where the numerator and denominator functions N and D are
defined by

N ≡ 2γ v

γ + 1

(
3

2r
+

1

r − rS

)

+

(
γ − 1

γ + 1

)
v2�K(� − �0)2

αa4r4
+

v
(
�2 − �2

K

)
a2r3

, (22)

and

D ≡ v2

a2
− 2γ

γ + 1
. (23)

In order to obtain well-behaved global solutions, the numer-
ator and denominator functions must vanish at exactly the same
location in the flow. This condition represents the mathematical
definition of a critical point. Setting N = D = 0, we obtain the
critical conditions

2γ vc

γ + 1

(
3

2rc

+
1

rc − rS

)
+

(
γ − 1

γ + 1

) [
v2

c �K(�c − �0)2

αa4
c r

4
c

]

+
vc

(
�2

c − �2
K

)
a2

c r
3
c

= 0, (24)

and
v2

c

a2
c

− 2γ

γ + 1
= 0, (25)

where rc, vc, ac, and �c denote the values of the radius, the
velocity, the sound speed, and the specific angular momentum
at the critical point, respectively. Any accretion solution must
pass smoothly through the critical point, which is guaranteed
if the critical conditions are satisfied. In this work, we assume
approximate equipartition between the gas and magnetic pres-
sures following Narayan et al. (1997), and accordingly we set
γ = 1.5 in the subsequent analysis.

The topological nature of a critical point is determined by the
value of the velocity gradient dv/dr at that point (e.g., Das 2007;
Becker & Le 2003). In general, we obtain two possible values
for dv/dr , with one corresponding to accretion and the other to
an outflow (wind). Any physically acceptable solution must pass
through a saddle type or X-type critical point which is obtained

when both of the derivatives are real and of opposite signs. If
a shock forms, then the accretion flow must also pass through
another saddle-type critical point in the post-shock region. When
both of the values of dv/dr are complex, the critical point is
referred to as O-type. This type of critical point is unphysical
and therefore no acceptable flow solution can pass through such
a point.

2.2. Inner Boundary Conditions

Solutions for the flow variables v(r), �(r), and a(r) are
obtained by numerically integrating Equations (11) and (20),
supplemented by the algebraic relation given by Equation (15).
Becker & Le (2003) determined that in order to ensure the
stability of the calculation, the integration must proceed in
the outward direction, starting from a point close to the event
horizon. This requires the availability of asymptotic boundary
conditions that can be used to establish the starting values for the
physical variables. Based on the fundamental general relativistic
principle that the torque must vanish at the horizon (Weinberg
1972), Becker & Le (2003) derived the explicit asymptotic
behaviors of v(r), �(r), and the “entropy function,” K(r), for
material subject to the Shakura–Sunyaev viscosity prescription,
where

K(r) ≡ r v a
γ +1
γ−1

ΩK
. (26)

The physical significance of K can be understood by combining
Equations (1), (13), (8), and (26) to show that

Kγ−1 ∝ P

ργ
. (27)

This relation establishes that K remains constant in regions of
the flow unaffected by dissipation, where P ∝ ργ .

If the gas is in local thermodynamic equilibrium, then one
can demonstrate that the value of K is related to the entropy per
particle S by (Reif 1965)

S = k ln K + c0, (28)

where c0 is a constant that depends only the composition of
the gas, but is independent of its state. Becker & Le (2003)
established that the asymptotic behaviors of K(r) and �(r) close
to the event horizon are given by

K(r) = K0

[
1 − 16 α �2

0

5 c2r5
S

( rS

2

)1/2
(r − rS )5/2

]
, r → rS ,

(29)
and

�(r) = �0 +
2 α �0

c2rS

(
2

rS

)1/2
(

K2
0

2 r3
S

) γ−1
γ +1

(r − rS )
γ +5

2γ +2 , r → rS ,

(30)
where K0 represents the entropy value at the horizon. Note
that the asymptotic radial dependence of K(r) is very weak,
reflecting the unimportance of viscous dissipation near the
horizon. Becker & Le (2003) also found that the asymptotic
variation of the inflow velocity is given by

v(r) = vff(r)

[
1 +

2 ε0r
2 − �2

0 − (γ + 1) f (r)

r2 v2
ff(r) − (γ − 1) f (r)

]1/2

, r → rS ,

(31)
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where ε0 denotes the value of the specific energy transport rate
at the horizon, the free-fall velocity is given by

vff(r) =
(

2 GM

r − rS

)1/2

, (32)

and the function f is defined by

f (r) ≡ 2 γ r2

γ 2 − 1

[
K2

0

2 r3(r − rS )

] γ−1
γ +1

. (33)

For given values of the parameters ε0, �0, and K0, Equations (30)
and (31) can be used to compute starting values for the
integration of the variables �(r) and v(r) away from the event
horizon.

3. GLOBAL SOLUTIONS

The structure of the global disk/shock model depends on the
energy transport rate at the horizon ε0, the angular momentum
at the horizon �0, the entropy at the horizon K0, the viscosity
parameter α, and the ratio of specific heats γ . In the calculations
performed here, we set γ = 1.5, following Narayan et al. (1997).
When a shock is present, we use the subscripts “−” and “+” to
denote quantities measured just upstream and just downstream
from the shock, respectively. In a shocked disk, the gas passes
through one critical point in the pre-shock region at r = rout

c ,
and then through another in the post-shock region at r = r in

c .
Conversely, if the flow is smooth (shock-free), then the gas only
passes through one critical point, located at radius r = rc.

The process of determining the structure of a viscous ADAF
disk containing an isothermal shock begins with the selection of
input values for ε0, �0, α, and γ . We must also select a provisional
value for the entropy parameter K0. Based on this information,
we can utilize the asymptotic relations given by Equations (30)
and (31) to compute values for �(r) and v(r), respectively,
at the starting radius for the outward integration, which is
2.001 GM/c2. Next we numerically integrate Equations (11),
(15), and (20), beginning at the starting radius and working
outward toward the inner critical point. The value of K0 is varied
until a solution is obtained that satisfies the critical conditions
given by Equations (24) and (25), which ensure that the flow
passes smoothly through the inner critical point at radius r in

c .
After the location of the inner critical point has been es-

tablished, the integration must be continued into the upstream,
subsonic region. Due to the mathematical structure of the dy-
namical Equation (21), it is not possible to integrate across the
critical point itself. We must therefore employ linear extrapo-
lation, which requires the calculation of the derivative dv/dr
at the critical point using l’Hôpital’s rule. After performing the
linear extrapolation, the integration is continued in the subsonic
region until we reach the shock radius, r∗, which is assigned
a provisional value initially. Since no energy is lost from the
disk between the shock and the horizon, it follows that ε0 = ε+,
where ε+ is the energy transport rate on the downstream side
of the shock. At the shock location, the velocity and the energy
transport rate experience discontinuous transitions described by
the isothermal shock jump conditions, which can be written as
(e.g., Chakrabarti 1989a)

v+

v−
= M2

+ Δε ≡ ε+ − ε− = v2
+ − v2

−
2

, (34)

where M+ ≡ v+/a+ denotes the post-shock Mach number. This
relation facilitates the calculation of the pre-shock (incident)

Figure 1. (a) Inflow velocity v (solid lines) and isothermal sound speed a
multiplied by

√
2γ /(γ + 1) (dashed lines) plotted as functions of the radius r

in units of GM/c2 for a typical global accretion solution with γ = 1.5. The
thick and thin lines represent the shocked and smooth solutions, respectively.
(b) Energy transport rate ε plotted as a function of radius r. Note the jump to the
negative post-shock value due to the release of energy through the upper and
lower surfaces of the accretion disk at the isothermal shock location. See the
text for details.

energy transport rate, ε−. Note that if no shock is present, then ε
is continuous throughout the entire flow, and therefore Δε = 0
and ε0 = ε−. By definition, the flow maintains a uniform
temperature across the isothermal shock, and consequently
a+ = a−. The shock radius r∗ is varied until we obtain a solution
that passes smoothly through the outer critical point, located
in the upstream region at radius rout

c . The solution process is
completed when the critical conditions are satisfied at the outer
critical point. For given input values of ε0, �0, α, and γ , in the
end we obtain unique values for K0, r∗, r in

c , and rout
c , in addition

to the associated global dynamical solution for the disk/shock
structure.

A typical set of shocked and smooth accretion solutions
obtained for the same value of the incident energy transport rate
ε− is presented in Figure 1(a). In these calculations, the Shakura–
Sunyaev viscosity parameter was specified by setting α = 0.1,
and the specific heat ratio is given by γ = 1.5. By applying
the multi-step iterative method described above, we obtain the
parameters ε− = 0.001856, ε0 = ε+ = −0.003, �0 = 2.55, and
K0 = 0.00689 for the shocked flow. In the shocked case, the
incident flow first becomes supersonic upon passing through the
outer critical point located at rout

c = 73.51. The gas subsequently
passes through an isothermal shock at r∗ = 31.2, where the
velocity makes a discontinuous transition to become subsonic
again. Downstream from the shock, the flow accelerates towards
the horizon, and regains its supersonic character after crossing
the inner critical point at r in

c = 6.798. The radius at the
outer edge of the hot region, redge = 3555, is computed by
setting � = �K, so that the angular momentum matches the
local Keplerian value. The radial profile of the specific angular
momentum � is plotted in Figure 2(b). Although the incident
energy transport rate ε− is negative in our calculations, it should
be emphasized that the total energy inflow rate, including the
rest mass energy, is positive as required.
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Figure 2. Specific angular momentum � plotted as a function of the radius r for
(a) α = 0.01, (b) α = 0.1, and (c) α = 0.2. Here we assume that γ = 1.5.
The solid, dotted, and dashed lines correspond to the shocked, smooth, and
Keplerian profiles, respectively. See the text for the complete sets of parameters
used in each panel.

For the smooth-flow solution depicted in Figure 1(a), we
used the parameters ε0 = ε+ = ε− = 0.001856, �0 = 2.368,
and K0 = 0.008565. In this case, the value of �0 was selected
so that � = �K at the same outer edge radius, redge = 3555,
obtained in the shocked disk (see Figure 2(b)). The smooth
flow solution passes through a single critical point, located at
rc = 8.097. It is interesting to compare the plots of the sound
speed obtained in the smooth and shocked cases. The loss of
energy at the shock significantly reduces the sound speed (and
therefore the temperature) in the post-shock region relative to
the smooth solution. In Figure 1(b), we plot the variation of the
energy transport rate for the shock solution. The excess energy
released through the upper and lower surfaces of the disk at the
shock location may be sufficient to power the formation of a
relativistic jet (Le & Becker 2005; Becker et al. 2008).

The viscosity parameter α plays a central role in determining
the efficiency of the angular momentum transport in the disk. We
explore the effect of varying this parameter in Figure 2, where
we plot the results obtained for the radial profile of the specific
angular momentum � in both shocked and smooth disks for three
different values of α. All of the solutions are sub-Keplerian
(� < �K) for r < redge. In the shocked case, the increase in
the angular momentum in the post-shock region produces the
“centrifugal barrier” required for shock formation, while no such
barrier exists in the smooth case. In each of the panels, the value
of �0 was determined by satisfying the inner critical conditions,
and the incident energy transport rate ε− has the same value
in the shocked and smooth scenarios. The parameter values
adopted in panel (a) are α = 0.01, γ = 1.5, ε+ = −1.0 × 10−3,
ε− = 1.9072 × 10−3, �0 = 3.0, K0 = 2.7509 × 10−3 in the
shocked case, and ε+ = ε− = 1.9072 × 10−3, �0 = 2.845,
K0 = 3.8588 × 10−3 in the smooth (shock-free) case. In panel
(b), we adopt the same parameters used in Figure 1, namely
α = 0.1, γ = 1.5, ε+ = −3.0 × 10−3, ε− = 1.856 × 10−3,
�0 = 2.55, K0 = 6.89 × 10−3 in the shocked case, and
ε+ = ε− = 1.856 × 10−3, �0 = 2.368, K0 = 8.565 × 10−3

in the smooth case. The values adopted in panel (c) are
α = 0.2, γ = 1.5, ε+ = −1.0 × 10−3, ε− = 1.6483 × 10−3,
�0 = 2.1, K0 = 1.1883 × 10−2 in the shocked case, and
ε+ = ε− = 1.6483×10−3, �0 = 1.966, K0 = 1.25×10−2 in the
smooth case. Note the increasing prominence of the centrifugal
barrier as α increases.

4. SHOCK PROPERTIES

Since this is the first work to extensively consider the
consequences of a standing shock for the structure of a viscous
accretion disk, it is interesting to examine how the shock
properties depend on the various flow parameters. We carry

Figure 3. Variation of (a) the isothermal shock radius r∗, (b) the compression
ratio R = v−/v+, and (c) the energy jump Δε as functions of �0. The
solid, dotted, dashed, dot-dashed, and short-long-dashed curves correspond to
ε0 = −0.006, −0.005, −0.004, −0.003, and −0.002, respectively. Here, we set
α = 0.1 and γ = 1.5.

out the analysis for flows characterized by the fundamental
parameters (ε0, �0, α), where ε0 denotes the energy transport
rate at the horizon, which is the same as the post-shock energy
transport rate ε+. In each case, we keep one of the three
parameters (ε0, �0, α) fixed and vary the other two to study
the resulting shock properties.

In Figure 3, we present the results obtained for the shock
radius, r∗, the compression ratio, R = v−/v+, and the energy
jump, Δε = ε+ − ε−, as functions of the angular momentum
transport rate �0 and the energy transport rate at the horizon ε0.
In these calculations, the viscosity and specific heat parameters
are held constant, with α = 0.1 and γ = 1.5, respectively.
Figure 3(a) clearly demonstrates that accretion flows with a very
wide range of input parameters may possess isothermal standing
shocks. Note that for a given post-shock energy parameter ε0, the
shock location recedes away from the black hole with increasing
�0 because of the enhancement of the centrifugal barrier. On the
other hand, the shock location shifts inward as ε0 decreases for a
given value of �0, due to the increased ram pressure of the flow.
For a given value of ε0, there is a restricted range of �0 values
within which a shock can exist. In general, we find that the
shock radius r∗ always exceeds ∼10 GM/c2. In Figure 3(b), we
plot the variation of the shock compression ratio R as a function
of the flow parameters ε0 and �0. We observe that for fixed
ε0, the compression ratio increases as the shock moves away
from the black hole. In Figure 3(c), we plot the corresponding
variation of the energy jump Δε. Note that Δε becomes more
negative as ε0 decreases for fixed �0, which reflects the fact that
a larger amount of gravitational potential energy is released into
the outflow when the shock wave forms closer to the black hole.

Next we examine the dependence of the shock properties on
the viscosity parameter α. In Figure 4(a), the isothermal shock
location r∗ is plotted as a function of α for various values of the
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Figure 4. Variation of (a) the isothermal shock radius r∗, (b) the compression
ratio R = v−/v+, and (c) the energy jump Δε as functions of α. The solid, dotted,
and dashed lines denote ε0 = −0.006, −0.005, and −0.004, respectively. Here,
we set �0 = 2.62 and γ = 1.5.

post-shock (horizon) energy transport rate ε0 for the case with
γ = 1.5. Here, we fix the angular momentum transport rate by
setting �0 = 2.62. In all cases, we observe that shocks can form
over a wide range of flow parameters. For a given α, the shock
tends to form farther away from the black hole as ε0 is increased,
which is consistent with the behavior noted in Figure 3(a). We
also observe that for fixed ε0, the shock radius r∗ increases with
α. This is because higher values of α tend to reduce the angular
momentum, which forces the centrifugal barrier to operate at a
larger radius in order to be effective. Note that for a given set
of flow parameters (ε0, �0), the viscosity parameter α has both
upper and lower limits for shock formation. The lower limit
reflects the fact that fully inviscid flows cannot form shocks for
arbitrary combinations of ε0 and �0 (e.g., Le & Becker 2005).
Conversely, the upper limit on α is due to the efficient dissipation
of angular momentum that occurs as α increases. This effect
prevents the development of the centrifugal barrier required for
shock formation if α is too large.

The dependence of the shock properties on the post-shock
energy ε0 is illustrated in Figure 5 for three values of the
angular momentum transport rate �0. The viscosity and specific
heat parameters are held constant with the values α = 0.1 and
γ = 1.5, respectively. In Figure 5(a) we plot the shock location
r∗ as a function of ε0. Since the standing shock is centrifugally
supported, the shock radius r∗ increases when �0 is increased for
a fixed value of ε0. On the other hand, if we hold r∗ constant, then
we observe an anticorrelation between �0 and ε0. In Figures 5(b)
and (c), respectively, we depict the associated variations of the
compression ratio R and the energy jump Δε as functions of ε0
for the same set of flow parameters used in Figure 5(a). The
compression ratio increases when either �0 or ε0 is increased.
We note that Δε increases almost linearly with increasing ε0 for
fixed �0. The results indicate that flows with larger values of �0
tend to discharge less energy at the shock location.

Figure 5. Variation of (a) the isothermal shock radius r∗, (b) the compression
ratio R = v−/v+, and (c) the energy jump Δε as functions of ε0. The solid,
dotted, and dashed curves represent �0 = 2.62, 2.67, and 2.72, respectively.
Here, we set α = 0.1 and γ = 1.5.

The hot, sub-Keplerian ADAF region must connect with a
cool Keplerian outer disk at some large radius. We estimate the
outer edge radius of the ADAF zone, redge, by setting the angular
momentum of the accretion flow equal to the local Keplerian
value. In Figure 6, we plot the variation of the outer edge radius
as a function of �0 and ε0 for the case with α = 0.1 and
γ = 1.5. We observe that for a fixed value of ε0, the value
of redge rapidly increases with increasing �0, indicating that the
cool Keplerian disk recedes from the horizon. The outer edge
radius also increases with increasing ε0 when �0 is held fixed.

The shocked, viscous, advection-dominated disks discussed
here represent a new type of astrophysical phenomenon, and
therefore it is important to investigate the range of flow param-
eters within which shocks can form. In Figure 7, we analyze
this question for the case with γ = 1.5 by varying the angular
momentum transport rate �0 and the upstream (incident) energy
transport rate ε− while holding the viscosity parameter α fixed at
five different values. The solid curve depicts the region within
which shocked solutions are possible for fully inviscid flow
(α = 0). This result agrees very well with Figure 2 from Le &
Becker (2005). We note that the allowed region for the shocked
solution shifts toward lower angular momentum as α increases.
This shift occurs because the specific angular momentum of the
accreting material at the horizon, �0, decreases in response to
the enhanced viscosity associated with the increase in α. The
shrinkage of the region for the shocked solution observed as
α increases suggests that shocked disk solutions are impossi-
ble above a critical value of α, denoted by αcrit. For the model
considered here, with γ = 1.5, we find that αcrit ≈ 0.27.

5. ASTROPHYSICAL APPLICATIONS

It is interesting to ask whether the self-consistent disk/
shock model we have described can account for the energetics
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Figure 6. Plot of the outer edge radius redge as a function of �0. This is
the radius where the angular momentum � equals the Keplerian value �K
(Equation (12)). The solid, dotted, and dashed lines correspond to ε0 = 0.0,
−0.004, and −0.008, respectively. Here, we set α = 0.1 and γ = 1.5. See the
text for details.

Figure 7. Representation of the parameter space spanned by the specific angular
momentum at the horizon �0 and the incident energy transport rate ε− when
γ = 1.5. The wedge-shaped regions denote the areas of the parameter space
within which shocks can form for the indicated values of α. See the discussion
in the text.

of specific jet sources, such as M87 and Sgr A∗. When
observational values of the black hole mass M, the accretion
rate Ṁ , and the jet kinetic luminosity Ljet are available for a
particular source, we can utilize this information to constrain
the model parameters. The process begins by selecting values
for the fundamental free parameters ε0, α, and γ . After selecting
provisional values for �0 and K0, we utilize the asymptotic
relations given by Equations (30) and (31) to compute initial

values for the functions �(r) and v(r) at the starting radius
2.001 GM/c2. We then numerically integrate Equations (11),
(15), and (20) in the outward direction, and vary the value of
K0 until the critical conditions given by Equations (24) and (25)
are satisfied at the inner critical point.

The energy transport rate ε drops from its upstream value ε−
to the downstream value ε+ = ε0 at the shock location due to
the escape of energy from the disk into the outflow (jet). We
can therefore determine the shock radius r∗ by requiring that
the value of Δε computed using Equation (34) agrees with that
calculated based on the observed jet kinetic luminosity, Ljet,
using the relation

Ljet = −ṀΔε, (35)

where the negative sign appears because Δε < 0. Once
the shock radius is established, the integration is continued on
the upstream side of the shock toward the outer critical point.
If the flow does not pass smoothly through the outer critical
point, then the value of �0 is modified and the procedure is
repeated starting from the horizon. The computation of the self-
consistent disk/shock dynamical model is complete when the
critical conditions are satisfied at the outer critical point. For
given input values of ε0, α, and γ , in the end we obtain the
complete global dynamical solution along with unique values
for �0, K0, r∗, r in

c , and rout
c . We provide two specific examples

below.

5.1. M87

The disk/shock/outflow model we have developed was previ-
ously utilized by Becker et al. (2008) to analyze the structure of
the accretion flow in M87. The results obtained for that source
are presented in more detail here. Our application to M87 is
based on the observational values Ṁ = 1.34 × 10−1 M
 yr−1

(Reynolds et al. 1996), Ljet = 5.5 × 1043 erg s−1 (Reynolds
et al. 1996; Bicknell & Begelman 1996; Owen et al. 2000), and
M = 3.0 × 109 M
 (e.g., Ford et al. 1994). We set the vis-
cosity parameter α = 0.1 in order to demonstrate that shocks
can exist in ADAF disks even in the presence of substantial
viscosity, although our model can accommodate any value for
α. Based on the assumption of approximate energy equiparti-
tion between the magnetic field and the gas internal energy, we
adopt the value γ = 1.5 for the adiabatic index (Narayan et al.
1997). We utilize natural gravitational units in our numerical
examples, with GM = c = 1 and rS = 2, except as noted.
The remaining parameters for the shocked-disk model can be
computed based on the observations of M87, from which we
obtain ε− = 0.001516, ε+ = ε0 = −0.005746, �0 = 2.6257,
K0 = 0.00608, r∗ = 26.329, r in

c = 6.462, and rout
c = 96.798.

For the pre-shock and post-shock velocities and Mach num-
bers we obtain v− = 0.138, v+ = 0.068, M− = 1.427, and
M+ = 0.701, respectively, and for the disk half-thickness at the
shock location we obtain H∗ = 12.10.

The results obtained for the inflow speed v and the isothermal
sound speed a are plotted in Figure 8(a), and the associated
solution for the specific angular momentum � is depicted along
with the Keplerian profile �K (Equation (12)) in Figure 8(b).
Results are presented for both shocked and smooth (shock-free)
disks. In the shocked disk, the source is located at the shock
radius, r∗ = 26.329, and we observe that the values of � and �K
merge at redge = 4658, which represents the outer edge of the
ADAF region. The smooth solution is computed by integrating
the conservation equations using the same value for the incident
energy transport rate ε− as adopted in the shocked-disk model,
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Figure 8. Dynamical profiles for M87. (a) Inflow velocity v (solid lines) and
isothermal sound speed a multiplied by

√
2γ /(γ + 1) (dashed lines) plotted as

functions of the radius r in units of GM/c2. The thick and thin lines denote the
shocked and smooth solutions, respectively. (b) Specific angular momentum �

for the shocked (thick line) and smooth (thin line) solutions plotted as functions
of r in units of GM/c2 along with the Keplerian angular momentum �K (dot-
dashed line).

but with no shock included. The value of �0 is then varied until
we obtain � = �K at the same outer radius, redge = 4658, as in
the shocked disk. The resulting parameter values for the smooth
solution are ε− = ε+ = 0.001516, �0 = 2.3988, K0 = 0.0084,
and rc = 7.572. In order to facilitate comparison with the
shocked model, in the smooth case the source is assumed to
be at the same radius r = 26.329.

Our solutions for the specific angular momentum � are sig-
nificantly sub-Keplerian, in agreement with the results obtained
by Narayan et al. (1997), who utilized the same set of ADAF
conservation equations we employ. The sub-Keplerian nature of
the flow stems from the relatively high value for the viscosity
parameter adopted here, α = 0.1. Note that the sound speed (and
hence the temperature) is significantly lower in the shocked case
as compared with the smooth disk due to the release of energy
into the outflow at the shock location.

It is important to examine the energy balance in the shocked
model to ensure that the rate of energy loss at the shock location
is equal to the observational value for the kinetic luminosity
in M87. We can compute the theoretical value for the jet
luminosity, Ljet, by substituting our values for ε+ and ε− into
Equation (35). The result obtained is Ljet = 5.5 × 1043 erg s−1,
which agrees with the observed jet luminosity for M87. This
confirms that our viscous shocked disk model is able to account
for the energetics of the M87 outflow.

5.2. Sgr A∗

For Sgr A∗, we adopt the values M = 2.6×106 M
 (Schödel
et al. 2002) and Ṁ = 8.96 × 10−7 M
 yr−1 (Yuan et al.
2002; Quataert 2003), and we set γ = 1.5 and α = 0.1.
The kinetic luminosity of the jet is estimated using Ljet =
5 × 1038 erg s−1 (Falcke & Biermann 1999), although this
value is rather uncertain (e.g., Yuan 2000; Yuan et al. 2002).
The results for the remaining model parameters implied by
the observations are ε− = 0.00134884, ε+ = ε0 = −0.0085,
�0 = 2.6728, K0 = 0.005448, r∗ = 19.917, r in

c = 6.380, and
rout
c = 112.384. For the pre-shock and post-shock velocities

Figure 9. Same as Figure 8, except model results are for Sgr A∗.

and Mach numbers we obtain v− = 0.159, v+ = 0.0748,
M− = 1.4578, and M+ = 0.6860, respectively, and for the
disk half-thickness at the shock location we obtain H∗ = 8.72.

In Figure 9(a), we plot the results obtained for the inflow
speed v and the isothermal sound speed a in both the shocked
and smooth disk models for Sgr A∗. The profiles of � and �K are
plotted in Figure 9(b). In the shocked case, the source is located
at r∗ = 19.917, and we find that � = �K at radius redge = 5432,
which is the outer edge of the ADAF region. The incident energy
transport rate ε− = 0.00134884 is the same for both the smooth
and shocked models, and the value of �0 in the smooth case is
determined by requiring that � merges with the Keplerian profile
at the same radius redge = 5432 as in the shocked case. Based on
this approach, the parameters obtained for the smooth model are
ε− = ε+ = 0.00134884, �0 = 2.416, K0 = 0.008293, and rc =
7.511. We assume for consistency that the source is located at the
same radius r = 19.917 in both the smooth and shocked cases.

The results for the specific angular momentum � are sig-
nificantly sub-Keplerian, as expected based on the relatively
high value utilized for the viscosity parameter, α = 0.1 (cf.
Figure 8(b)). The sound speed is lower when a shock is present,
due to the escape of energy at the shock location, as noted previ-
ously in Figure 8(a). The result for Ljet obtained by substituting
our values for ε+ and ε− into Equation (35) is equal to the ob-
served jet luminosity, 5 × 1038 erg s−1, and this establishes that
our shocked disk model successfully accounts for the observed
energetics of the accretion flow and the outflow in Sgr A∗.

6. CONCLUSION

In this paper we have presented the first systematic study
of the structure of stationary, advection-dominated, shocked
viscous accretion disks around black holes. Our primary focus
here has been on the global properties of accretion flows
containing isothermal shock waves, formed as a result of
the presence of a centrifugal barrier located near the event
horizon. Our model is based on the same set of standard ADAF
conservation equations considered by Narayan et al. (1997). The
conservation equations are supplemented by the inner boundary
conditions developed by Becker & Le (2003) which allow the
calculation of starting values for the physical variables close to
the horizon. Once the starting values are established, a stable
outward integration method is employed to obtain the radial
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profiles of the various flow quantities such as velocity, sound
speed, and angular velocity. The fundamental model parameters
are the energy inflow rate at the horizon, ε0, the specific angular
momentum of the material at the horizon, �0, the entropy
parameter at the horizon, K0, the Shakura–Sunyaev viscosity
parameter, α, and the ratio of specific heats, γ .

For given observational values of the black hole mass M,
the accretion rate Ṁ , and the jet kinetic luminosity Ljet, we
are free to select values for α, γ , and ε0. Following Narayan
et al. (1997), we have set γ = 1.5 in the calculations presented
here. The remaining parameters �0 and K0, and the shock radius
r∗, are subsequently determined by applying the asymptotic
inner boundary conditions given by Equations (30) and (31),
the critical conditions given by Equations (24) and (25), and
the shock jump conditions given by Equations (34) and (35).
The dynamical structure of the disk/shock system is obtained
by numerically integrating Equations (11), (15), and (20) in the
outward direction beginning at a starting radius located close to
the event horizon.

The formation of a shock requires that the flow possesses
at least two critical points. The existence of multiple critical
points in both adiabatic and polytropic accretion flows has
been reported by many authors (e.g., Abramowicz & Zurek
1981; Chakrabarti 1989a, 1989b, 1990, 1996). Flows with
multiple critical points are confined to a restricted region of
the parameter space, as indicated in Figure 7. Accretion flows
within this region can form isothermal shocks. In their earlier
study, Narayan et al. (1997) focused solely on solutions that pass
only through the inner critical point, and consequently they did
not obtain shocked disk solutions. Flows with discontinuities
must first pass through an outer critical point, and subsequently
through a shock and an inner critical point in order to represent
physically acceptable accretion solutions. That is the scenario
we have investigated here.

The possible presence of shock waves in accretion disks and
their observational implications has been examined by a variety
of previous authors. Abramowicz & Chakrabarti (1990) pre-
sented one of the earliest studies of the properties of standing
shock waves in accretion disks. Subsequently, the particular im-
portance of isothermal shock waves was realized by Le & Becker
(2004, 2005, 2007), who pointed out that efficient particle accel-
eration in the vicinity of a standing isothermal shock can help
to explain the formation of the relativistic outflows of matter
commonly observed around radio-loud, underfed black holes.
However, all of these previous studies of isothermal shocks in
accretion disks neglected the important role of viscosity in de-
termining the disk structure. Very recently, Becker et al. (2008)
demonstrated that first-order Fermi acceleration inside a vis-
cous, shocked ADAF can accelerate particles more efficiently
than in a smooth disk. Hence the presence of a standing shock
wave can create a potentially favorable environment for the pro-
duction of relativistic outflows. In this paper, we have presented
a detailed study of the dynamics of viscous, shocked ADAF
disks that are governed by the standard description of the an-
gular momentum transport based on the Shakura–Sunyaev pre-
scription for the kinematic viscosity. In particular, we confirm
that the energetics of the viscous disk/shock model can explain
the observational properties of both the accretion flow and the
relativistic outflows in M87 and Sgr A∗.

In Figure 7 we explored the parameter space within which
ADAF disks with isothermal shocks can exist as a function
of the specific angular momentum at the horizon �0 and the
incident energy transport rate ε− for various (constant) values of

the viscosity parameter α. The shock region shifts toward lower
values of �0 as α increases due to the enhanced outward diffusion
of angular momentum. We find that for the canonical value
γ = 1.5, shocked disk solutions can exist provided α � 0.27.
This establishes for the first time that highly viscous ADAF
disks can contain standing shock waves. The stability of such a
shock is an open question, but Nagakura & Yamada (2008) and
Okuda et al. (2007) recently found that shocks in inviscid disks
are persistent, although the shock radius may oscillate. These
results at least suggest the possibility that shocks in viscous disks
may be stable as well, although this needs to be investigated in
future work. Since shocked solutions are expected to possess
higher entropy than smooth solutions, we argue based on the
second law of thermodynamics that when shock solutions are
permitted dynamically, they should be expected to form (Becker
& Kazanas 2001).

Although Gu & Lu (2001, 2004) obtained solutions for ADAF
disks containing Rankine–Hugoniot shocks, the results devel-
oped here represent the first dynamical solutions for ADAF disks
with a significant level of viscosity (i.e., α = 0.1) containing
isothermal shocks. The Rankine–Hugoniot shocks studied by
Gu & Lu (2001, 2004) have conserved energy transport rates,
and therefore they cannot directly produce relativistic outflows
(jets). Conversely, the isothermal shocks we study here have a
discontinuous energy transport rate and consequently they are
able to power the observed outflows. In our analysis of the disk
structure, we have assumed that the accretion rate Ṁ remains
constant throughout the disk, and therefore we have neglected
the effect of the outflow mass loss on the dynamics of the disk,
despite the fact that an outflow emanates from the shock loca-
tion in our model. This assumption is probably reasonable since
estimates show that the rate of mass loss from the shock into the
wind is typically ∼10−3 Ṁ if the jet is hadronic (Le & Becker
2005); this ratio is further reduced by the factor me/mp if the
jet is leptonic. However, there are two other potential forms of
mass loss from the disk that must also be considered. The first
is the possibility of hydrodynamically driven outflows of the
background thermal gas, and the second is the possibility of
the escape of a significant number of relativistic particles from
the inner and/or outer regions of the disk, rather than from the
shock itself. We consider each of these issues below.

Narayan et al. (1997) and Blandford & Begelman (1999) have
noted that ADAF disks typically possess a positive Bernoulli
parameter,

B(r) ≡ v2

2
+

�2

2 r2
+

γ a2

γ − 1
− GM

r − rS

, (36)

suggesting that sufficient energy is available to power hydro-
dynamical outflows of the thermal gas. It is interesting to
re-examine this issue in the context of the shocked, viscous
accretion disks considered here. In Figures 10(a) and (b),
respectively, we plot the Bernoulli parameter as a function of
radius based on the smooth and shocked models for M87 and
Sgr A∗ developed in Section 5. Both the smooth and shocked
solutions display a slightly positive Bernoulli parameter in the
inner and outer regions, suggesting that the gas is unbound there.
When a shock is present, the gas is bound in the post-shock re-
gion, but it eventually becomes unbound again before crossing
the horizon.

The Bernoulli parameter is related to the energy transport rate
Ė and the viscous torque G via (see Equation (3))

Ė = −G Ω + ṀB. (37)
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Figure 10. Bernoulli parameter (Equation (36)) plotted as a function of the
radius r in units of GM/c2 for (a) M87 and (b) Sgr A∗. The thick and thin lines
denote the shocked and smooth solutions, respectively.

Since Ė is conserved in the inner region, it follows that the posi-
tive bump in the Bernoulli parameter between the shock and the
horizon reflects an increase in the torque-driven outward energy
transport rate, G Ω. This effect is less pronounced in the shocked
solution because the escaping particles carry away a significant
fraction of the binding energy. The positivity of the Bernoulli
parameter in the inner and outer regions suggests the possibil-
ity of hydrodynamical outflows emanating from the non-shock
regions of the flow. However, any such outflows would be quite
weak, with terminal Lorentz factors Γ = B + 1 ∼ 1.01, whereas
the terminal Lorentz factor for the outflow from the shock is
Γ ∼ 6 (Becker et al. 2008; P. A. Becker et al. 2009, in prepara-
tion). More fundamentally, it must be emphasized that despite
the positivity of the Bernoulli parameter, there is no hydrody-
namical mechanism in the model considered here capable of
generating an outflow, since the ADAF disks we focus on are
in vertical hydrostatic equilibrium, and therefore the net verti-
cal force vanishes (cf. Equation (13)). Hence some additional
mechanism, outside the standard ADAF framework, must be
operative in order to channel the energy into the outflows. In
our view, the outflows are not hydrodynamical in nature, but
are instead powered by the first-order Fermi acceleration of
relativistic particles in the vicinity of the discontinuous shock.

In addition to the possibility of hydrodynamical mass loss,
some mass may also be lost from the disk in the form of rela-
tivistic particles that escape from the inner and outer regions of
the disk, rather than from the shock itself. The escape of these
additional relativistic particles could be driven by the distributed
first-order Fermi acceleration occurring throughout the disk as
a consequence of the overall compression of the flow. The sig-
nificance of this effect can only be understood by performing
a detailed study of the relativistic particle transport occurring
throughout the disk, which is beyond the scope of this paper.
We have developed such a model and will report the results in a
separate paper. Preliminary calculations suggest that the spatial
distribution of the escaping particles is strongly peaked at the
shock location, with about half of the particles escaping from the
shock itself, and the remainder escaping from the surrounding
region. Hence, we conclude that the loss of mass from the disk
is strongly concentrated in the vicinity of the shock, and that it
is dominated by the escape of relativistic particles, rather than
by hydrodynamical outflows of the background (thermal) gas.
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paper. S.D. acknowledges support via a postdoctoral fellowship
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