STIS Cycle 10 Calibration Plan

<table>
<thead>
<tr>
<th>ID (C9)</th>
<th>Proposal Title</th>
<th>Frequency</th>
<th>Estimated Time (orbits)</th>
<th>Scheduling Required CD BS</th>
<th>Resources Required (FTE weeks)</th>
<th>Products</th>
<th>Accuracy Required</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Routine Monitoring Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8900</td>
<td>CCD Performance Monitor</td>
<td>2 per year</td>
<td>42</td>
<td>Sep & Dec 01, Jun 02</td>
<td>3</td>
<td>CDBS, ISR, STAN</td>
<td>0.1 ADU, drk 0.5 e-/hr, rms 0.05e-/hr/pix</td>
<td>Measures bias level, read noise, CTE and gain to check the performance and commandability of CCD (only amp D).</td>
</tr>
<tr>
<td>8901</td>
<td>CCD Dark Monitor</td>
<td>14 per week</td>
<td>730</td>
<td>start 01: Dec 01; 02: Jun 02</td>
<td>3</td>
<td>CDBS, ISR</td>
<td>> 5%</td>
<td>Monitor CCD behaviour and chart growth of hot and bad pixels</td>
</tr>
<tr>
<td>8902</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8903</td>
<td>CCD Bias Monitor</td>
<td>daily</td>
<td>365</td>
<td>From 9/1/01 to 8/31/02</td>
<td>17</td>
<td>CDBS, ISR</td>
<td>0.1 ADU; rms 0.3-0.8 ADU</td>
<td>Track evolution of hot columns. Build high-S/N superbias.</td>
</tr>
<tr>
<td>8904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8905</td>
<td>CCD Read Noise Monitor</td>
<td>monthly</td>
<td>24</td>
<td>start Sep 01</td>
<td>4</td>
<td>ISR</td>
<td>0.05 DN</td>
<td>For all amplifiers (A, B, C, D), full frame Gain=1, 4 binnings=1x1,1x2,2x1,2x2</td>
</tr>
<tr>
<td>8906</td>
<td>CCD Hot Pixel Annealing</td>
<td>monthly</td>
<td>156(^a)</td>
<td>28-day month</td>
<td>3</td>
<td>reports; CDBS</td>
<td><5%</td>
<td>Anneal hot pixels, track their growth.; examine CTE performance</td>
</tr>
<tr>
<td>8907</td>
<td>CCD Spectroscopic Flats</td>
<td>monthly</td>
<td>79</td>
<td></td>
<td>4</td>
<td>CDBS, ISR</td>
<td><5%</td>
<td>Monthly for G750M; once for all other gratings</td>
</tr>
<tr>
<td>8908</td>
<td>CCD Imaging Flats</td>
<td>monthly</td>
<td>18</td>
<td>LP monthly; OII, OIII evry 6 months</td>
<td>6</td>
<td>CDBS, ISR</td>
<td><1%</td>
<td>Investigate flat-field stability</td>
</tr>
<tr>
<td>8909</td>
<td>CCD Dispersion Solutions</td>
<td>annually</td>
<td>4</td>
<td>Before SM3B</td>
<td>4</td>
<td>CDBS</td>
<td>0.2 pixel</td>
<td>Verify the dispersion coefficients</td>
</tr>
<tr>
<td>8910</td>
<td>CCD Sparse-field CTE internal</td>
<td>annually</td>
<td>64</td>
<td>Sep 01</td>
<td>3</td>
<td>ISR algo-rithm & coeff.</td>
<td>1%</td>
<td>Measures CTE using internal cal lamps and readouts. Reference measurements for SM3B</td>
</tr>
<tr>
<td>8911</td>
<td>CCD Sparse-field CTE external</td>
<td>annually</td>
<td>6</td>
<td>Sep 01</td>
<td>2</td>
<td>ISR algo-rithm & coeff.</td>
<td>1%</td>
<td>Measures CTE at different signal levels with varying background, amps B&D. Establish accurate correcton for low count level non-linearity CTE.</td>
</tr>
<tr>
<td>8912</td>
<td>CCD full-field sensitivity monitor</td>
<td>2 per year</td>
<td>2</td>
<td>Sep 01, Mar 02</td>
<td>2</td>
<td>ISR, STAN</td>
<td>1%</td>
<td>Monitor CCD sensitivity over whole field of view using standard star field.</td>
</tr>
<tr>
<td>8913</td>
<td>Slit wheel repeatability</td>
<td>annually</td>
<td>1</td>
<td></td>
<td>2</td>
<td>ISR</td>
<td>0.1 pixel</td>
<td>between March and May 2002</td>
</tr>
<tr>
<td>ID (C9)</td>
<td>Proposal Title</td>
<td>Frequency</td>
<td>Estimated Time (orbits)</td>
<td>Scheduling Required CD BS</td>
<td>Resources Required (FTE weeks)</td>
<td>Products</td>
<td>Accuracy Required</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>8914</td>
<td>CCD Spectroscopic Sensitivity Monitor</td>
<td>4 per year</td>
<td>every 3 to 6 months</td>
<td>3</td>
<td>CDBS, ISR, report</td>
<td>2%</td>
<td></td>
<td>Detect any contamination and monitor focus in imaging mode.</td>
</tr>
<tr>
<td>8924</td>
<td>CCD PSF & LP filter curve calibration</td>
<td>This cycle</td>
<td>Before Sep 01</td>
<td>3</td>
<td>IHB, ISR, STAN, CDBS, SYNPHOT</td>
<td>2%</td>
<td></td>
<td>Constrain the long wavelength CCD imaging throughput; fill out missing PSF images.</td>
</tr>
<tr>
<td>8925</td>
<td>Coronagraphic PSF library</td>
<td>This cycle</td>
<td>Sep 01</td>
<td>1</td>
<td>CDBS, ISR</td>
<td>1%</td>
<td></td>
<td>Fill up gap in B-V within coronagraphic PSF library</td>
</tr>
<tr>
<td>8927</td>
<td>CTE effect on EWs of absorption lines in spectra of galaxies</td>
<td>Once</td>
<td>Sep 01</td>
<td>1</td>
<td>IISR, PASP</td>
<td>5%</td>
<td></td>
<td>Measure EW of absorption lines as a function of radius using amps B&D</td>
</tr>
<tr>
<td>8928</td>
<td>Spectroscopic Sensitivity and PSF for Pseudo-Aperatures</td>
<td>Once</td>
<td>before SM3B</td>
<td>3</td>
<td>PSF, IHB, STAN</td>
<td>5%</td>
<td>at 1e-6 central flux</td>
<td></td>
</tr>
<tr>
<td>8929</td>
<td>First-order LSFs for Pseudo-Aperture Locations</td>
<td>Once</td>
<td>Sep 01</td>
<td>6</td>
<td>ISR</td>
<td>0.1 pixels</td>
<td></td>
<td>Symbiotic star for L modes, 51 Peg & PN with narrow lines for M modes</td>
</tr>
<tr>
<td>8930</td>
<td>Effects of optical baffling on CCD imaging</td>
<td>Once</td>
<td>Sep 01</td>
<td>2</td>
<td>IHB</td>
<td>1%</td>
<td></td>
<td>Investigate scattering due to optical baffles.</td>
</tr>
</tbody>
</table>

CCD Special

<table>
<thead>
<tr>
<th>ID (C9)</th>
<th>Proposal Title</th>
<th>Frequency</th>
<th>Estimated Time (orbits)</th>
<th>Scheduling Required CD BS</th>
<th>Resources Required (FTE weeks)</th>
<th>Products</th>
<th>Accuracy Required</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8917</td>
<td>MAMA Dispersion Solutions</td>
<td>annually</td>
<td>before SM3B</td>
<td>2</td>
<td>CDBS, ISR</td>
<td>0.1 pixel</td>
<td></td>
<td>Annual monitor of dispersion solutions. Update ground values (E230 and E140H)</td>
</tr>
<tr>
<td>8918</td>
<td>MAMA Full-field Sensitivity</td>
<td>2 per year</td>
<td>9/01; 3/02</td>
<td>10</td>
<td>ISR, IHB, CDBS</td>
<td>1%</td>
<td></td>
<td>Star cluster in imaging mode. Monitor astrometric and PSF stability</td>
</tr>
<tr>
<td>8919</td>
<td>MAMA Sensitivity & Focus Monitor</td>
<td>monthly</td>
<td>22</td>
<td>8</td>
<td>CDBS, ISR, report</td>
<td>S/N=50 for sens, 10% for focus</td>
<td></td>
<td>Standard star spectra at field center to monitor slit throughput; ACQ/PEAK to measure focus.</td>
</tr>
<tr>
<td>8920</td>
<td>MAMA Dark Monitor</td>
<td>2/week/ detector</td>
<td>208</td>
<td>8</td>
<td>CDBS, ISR</td>
<td>1%</td>
<td></td>
<td>Check health MAMA detectors.</td>
</tr>
<tr>
<td>8921</td>
<td>MAMA Fold distribution</td>
<td>2 per year</td>
<td>4</td>
<td>3 days</td>
<td>report, TIPS</td>
<td>95%</td>
<td></td>
<td>Monitor performance of MAMA microchannel plates</td>
</tr>
<tr>
<td>ID (C9)</td>
<td>Proposal Title</td>
<td>Frequency</td>
<td>Estimated Time (orbits)</td>
<td>Scheduling Required</td>
<td>Resources Required (FTE weeks)</td>
<td>Products</td>
<td>Accuracy Required</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>MAMA FUV flats</td>
<td>annually</td>
<td>10</td>
<td>After SM3B</td>
<td>4</td>
<td>CDBS, ISR</td>
<td>1%</td>
<td>Wavelength-independent pixel-to-pixel response stability</td>
</tr>
<tr>
<td></td>
<td>MAMA NUV flats</td>
<td>annually</td>
<td>10</td>
<td>After SM3B</td>
<td>4</td>
<td>CDBS, ISR</td>
<td>1%</td>
<td>Wavelength-independent pixel-to-pixel response stability</td>
</tr>
<tr>
<td>8931</td>
<td>MAMA FUV/NUV Anomalous Recovery</td>
<td>As needed</td>
<td>N/A</td>
<td>As needed</td>
<td>4 days</td>
<td>N/A</td>
<td>N/A</td>
<td>Permit recovery of detectors after anomalous shutdown.</td>
</tr>
<tr>
<td>8916</td>
<td>STIS Spectroscopic Absolute Sensitivity: First Order</td>
<td>biannually</td>
<td>22</td>
<td>ASAP</td>
<td>ISR; CDBS</td>
<td>1%</td>
<td>Basic sensitivity measure. All modes. Primary spectrophometric standard.</td>
<td></td>
</tr>
<tr>
<td>8926</td>
<td>Filter Throughput Monitor</td>
<td>biannually</td>
<td>2</td>
<td>2</td>
<td>IHB, ISR, STAN</td>
<td>1%</td>
<td>standard star spectra through broad- & medium-band filters, CCD + MAMAs</td>
<td></td>
</tr>
</tbody>
</table>

New/Special Calibration Programs

<table>
<thead>
<tr>
<th>ID (C9)</th>
<th>Proposal Title</th>
<th>Frequency</th>
<th>Estimated Time (orbits)</th>
<th>Scheduling Required</th>
<th>Resources Required (FTE weeks)</th>
<th>Products</th>
<th>Accuracy Required</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8916</td>
<td>STIS Spectroscopic Absolute Sensitivity: First Order</td>
<td>biannually</td>
<td>22</td>
<td>ASAP</td>
<td>ISR; CDBS</td>
<td>1%</td>
<td>Basic sensitivity measure. All modes. Primary spectrophometric standard.</td>
<td></td>
</tr>
<tr>
<td>8926</td>
<td>Filter Throughput Monitor</td>
<td>biannually</td>
<td>2</td>
<td>2</td>
<td>IHB, ISR, STAN</td>
<td>1%</td>
<td>standard star spectra through broad- & medium-band filters, CCD + MAMAs</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL TIME (including all executions)

<table>
<thead>
<tr>
<th>C8</th>
<th>C9</th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td>1505</td>
</tr>
<tr>
<td>C8: 149</td>
<td>C8: 1927</td>
</tr>
<tr>
<td>C9: 84</td>
<td>C9: 1917</td>
</tr>
</tbody>
</table>

(Total Prime Cycle 10 STIS GO orbits: 1844)

a. External parallel orbits
Proposal ID 8900: CCD Performance Monitor

Plan

Purpose Measure the baseline performance of the CCD system.

Description This activity measures the baseline performance and commandability of the CCD subsystem. Only primary amplifier D is used. Bias and Flat Field exposures are taken in order to measure bias level, read noise, CTE, and gain. Numerous bias frames are taken to permit construction of "superbias" frames in which the effects of read noise have been rendered negligible. Full frame and binned observations are made, with binning factors of 2x1, 1x2, 2x2, 4x1, and 4x2. Dark images are taken in 2x2 binning mode; 1x1 binning darks are being taken in the nominal CCD Dark Monitor. Bias frames are taken in subarray readouts to check the bias level for ACQ and ACQ/PEAK observations. All exposures are internals.

Fraction 50%
GO/GTO Programs Supported

Resources Required: 42 internal orbits.

Observation

Resources Required: 3 FTE weeks
Analysis

Products Possible update of Reference files, flight software, ISR and STAN

Accuracy Goals
Bias level: better than 0.1 ADU at any position within CCD frame; read-out noise negligible. Dark current: good to 0.5 electron/hour. RMS noise level about 0.05 electron per hour per pixel. Systematic error in hot pixels may well exceed this limit.

Scheduling & Special Requirements
First set of visits in December 2001, second set in June 2002, visits 41 to 45 in September 2001
Proposal ID’s 8901 & 8902: CCD Dark Monitor

Plan

Purpose Monitor the darks for the STIS CCD.

Description Obtain darks at GAIN=1 in order to monitor CCD behaviour and chart growth of hot and bad pixels. Check how well the anneals work for the CCD. All exposures are internals and fit in occultation orbits.

Fraction 50%

GO/GTO Programs

Supported

Resources 730 internal orbits

Required: Observation

Resources 3 FTE weeks

Required: Analysis

Products Updates of the CDBS reference files (weekly superdarks); possibly an ISR.

Accuracy Goals > 5%. Good in superdarks made from long exposures for all but the hottest pixels, which are well measured (unsaturated) in the daily short exposures.

Scheduling & Special Requirements 3901 starts on Dec 2001; 3902 starts on Jun 2002. Visits 41 - 45 on Sept. 2001; 14 visits per week, 2 per day.
Proposal ID 8903 & 8904: CCD Bias Monitor

Plan

Purpose Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

Description Take full-frame bias exposures in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4. All exposures are internals and fit in occultation orbits. This proposal consolidates all bias calibration exposures.

Fraction 100% of CCD and 35% of total

GO/GTO Programs Supported

Resources Required:

Observation

Resources 365 internal orbits

Analysis

Products Updates of the CDBS Superbias reference files; possibly an ISR

Accuracy Goals

- Bias level: better than 0.1 ADU at any position within CCD frame;
- Superbias rms: 0.4 ADU at gain 1 1x1; 0.8 ADU at gain 1 1x2,2x1,2x2; 0.3 ADU at gain 4 1x1

Scheduling & Special Requirements

- Start on September 2001 to take over from 8865.

Resources Required:

Analysis

Products Updates of the CDBS Superbias reference files; possibly an ISR

Accuracy Goals

- Bias level: better than 0.1 ADU at any position within CCD frame;
- Superbias rms: 0.4 ADU at gain 1 1x1; 0.8 ADU at gain 1 1x2,2x1,2x2; 0.3 ADU at gain 4 1x1

Scheduling & Special Requirements

- Start on September 2001 to take over from 8865.
Proposal ID 8905: CCD Read Noise Monitor

Plan

Purpose Monitor the read noise in all of the on-chip amplifiers (A,B,C,D) to track changes affecting the STIS CCD.

Description This proposal measures the read noise of the STIS CCD using pairs of bias frames. All amplifiers (A, B, C, D) are used. Full frame and binned observations are made in both Gain 1 and Gain 4, with binning factors of 1x1, 1x2, 2x1 and 2x2.

Fraction 35%

GO/GTO Programs Supported

Resources 24 internal orbits

Required: Observation

Resources 4 FTE weeks

Required: Analysis

Products ISR

Accuracy 0.05 DN

Goals

Scheduling& Special

Starting on September 2001.

Special Requirements
Proposal ID 8906: CCD Hot Pixel Annealing

Plan

Purpose
The effectiveness of the CCD hot pixel annealing process is assessed by measuring the dark current behavior before and after annealing and by searching for any window contamination effects. In addition CTE performance is examined by looking for traps in a low signal level spectroscopic flat. Follows on from proposals 8081/8410/8841.

Description
The characteristics of the CCD will first be defined by a series of Bias, Dark and flat-field exposures. The CCD Thermoelectric cooler (TEC) will then be turned off to allow the CCD detector temperature to rise (from about -80C to +5C). The CCD will be left in the uncooled state for approximately 12 hours. At the end of this period, the TEC will be turned back on and the CCD cooled down to its normal operating temperature. Bias, Dark and flat-field images will be repeated to check for changes in the CCD characteristics. Because the CCD window is on the CCD housing and not bonded to the chip, the window is actually warmest when the CCD is being cooled (because the TEC power warms the housing and coldest during the TEC-off annealing process). The flat field exposures will permit evaluation of any window contamination acquired during the annealing period. Should continue on from the monthly scheduling of program 8841.

Fraction

GO/GTO Programs Supported

Resources 156 external parallel orbits

Resources Required:
Observation

Resources 3 FTE weeks

Required:
Analysis

Products Reference files, (flats, darks and biases), updates to hot pixel tables, reports and postings to the Web.

Accuracy n/a

Goals

Scheduling Special Requirements
Start on Sept 17, 2001, continue every 4 weeks through Aug 26, 2001

8
Proposal ID 8907: CCD Spectroscopic Flats

Plan

Purpose Obtain CCD flats on the STIS CCD in spectroscopic mode.

Description Using both the internal tungsten and deuterium lamps, take a series of flats at specified tilts to obtain high S/N flats for delivery to the STIS pipeline. The program is designed to achieve good S/N at all wavelengths by taking numerous exposures with peak counts of 80000 electrons each at GAIN=4 (or 20000 electrons at GAIN=1) for most gratings, with exceptions noted below. For observations taken with a slit, special commanding is used to place the fiducial bars in 5 different locations in the image so that they can be removed in a combined flat. At least 5 iterations are made of each exposure for cosmic ray removal. One grating is monitored monthly for changes (G430M, 5216 Angstroms, GAIN=1 and 4). The tungsten lamps are used. One grating (G750M, 6581 Angstroms), is observed twice at GAIN=1 with the tungsten lamps. The following observations are each made once in the cycle at GAIN=4: G750L with the tungsten lamps. (Peak per exposure is 32000 electrons.) G430M at 5216 Angstroms with the tungsten lamps. G430L with the tungsten lamps and the deuterium lamp, to get good S/N across the wavelength range. G230MB at 2557 and 3115 Angstroms with the deuterium lamp, since the 2557 tilt is substantially different from the rest. G230LB with the deuterium lamp. Monitor continues from cycle 9 proposal 8845.

Fraction 30%

GO/GTO Programs Supported

Resources Required: 79 internal orbits

Observation

Resources Required: 4 FTE weeks

Analysis

Products reference files; ISR

Accuracy <5%

Goals

Scheduling & Special Requirements Monthly for G750M throughout cycle, once for all other gratings
Proposal ID 8908: CCD Imaging Flats

Plan

Purpose Investigate flat-field stability over a monthly period.

Description Obtain a series of CCD flats using the MIRROR and no aperture every month to monitor the characteristics of the CCD response. Also look for the development of new cosmetic defects. Get flats for F28XOII and F28XOIII. Based on SMOV 7099. Continuation of 7634, with OII and OIII filters added.

Fraction 30%

GO/GTO Programs Supported

Resources Required:
- **Observation**
 - 18 internal orbits
- **Analysis**
 - 6 FTE weeks

Products
- PFL reference files; ISR

Accuracy Goals
- 0.05% pixel-to-pixel (except 0.8% for OII)

Scheduling & Special Requirements
- Monthly visits for 50CCD and F28XOII; F28XOIII and F28XOII every 6 months..
Proposal ID 8909: CCD Dispersion Solutions

Plan

Purpose To obtain deep engineering wavecals for all CCD gratings at several wavelength centers as a yearly monitor of derived dispersion solutions.

Description Wavelength dispersion solutions will be determined on a yearly basis as part of a long-term monitoring program (program 7650 was executed in Cycle 7, 8413 was executed in Cycle 8, 8848 was executed in Cycle 9). Deep engineering wavecals for each CCD grating will be obtained. Wavelength centers will be selected at extreme and central settings of each grating. Intermediate settings will also be taken to check the reliability of derived dispersion solutions. Only Prime modes will have been selected for observation in this program. The purely internal wavelength calibrations will be taken using the Pt/Cr-Ne line lamp and the appropriate 2-pixel wide long slit, 52x0.1; GAIN=4.

Fraction Cycle 7: 38% Cycle 8: 51% (of prime props w/ STIS exposures)
GO/GTO Cycle 9: 50% (fraction of visits of prime props w/ STIS exposures) Cycle 10: unknown at this time.

Programs Supported

Resources Required: 4 internal orbits
Analysis
Resources Required: 4 FTE weeks
Products DSP Reference file

Accuracy Goals 0.2 pixels. A S/N~100 was obtained for SMOV proposal 7077 for the peak of the stronger spectral lines to ensure accurate Gaussian fitting. Exposure times were selected in that proposal to provide less than 30,000 counts at the peak in order to prevent significant non-linearity effects.

Scheduling & Special Requirements Before SM3B
Proposal ID 8910: CCD Sparse Field CTE Internal

Plan

Purpose Establish (and improve with time) an accurate correction for parallel-register CTE losses that can be used for direct analysis of science data with negligible background. Do measurements for both GAIN settings (1 and 4).

Description The sparse-field CTE will be measured via internal calibration internal lamp observations taken through narrow slits. The strategy of the test is as follows. If there is a CTE effect, charge will be left behind as the image is shifted through pixels during readout. The further the charge needs to be shifted to be read out, the more charge it will lose. Because the D amp and the B amp read out at opposite ends of the CCD, the ratio in image intensity (B amp/D amp) should increase as the image position moves closer to the B amp and (and further from the D amp end). For the parallel CTE measurement, the test will use the cross-disperser slits: 0.05X29, 0.05x31NDB, and 0.05x31NDA slits, projected on different parts of the detector via special commanding of the slit wheel. The whole series of exposures are executed once for GAIN=1, and once for GAIN=4 to test the effect of different bias voltages.

Fraction 33%

GO/GTO Programs Supported

Resources Required:
- Observation: 64 external orbits
- Analysis: 3 FTE weeks

Products ISR, algorithm for calibration and coefficients.

Accuracy Goals 1%; CTE correction coeffs will be determined to a relative 1% accuracy; photometry should not be limited by 1% accuracy after correction for CTE.

Scheduling & Special Requirements September 2001. First two visits are CVZ.
Proposal ID 8911: CCD Sparse Field CTE External

Plan

Purpose Establish an accurate correction for low count level non-linearity (CTE) that can be used for direct analysis of science data.

Description An exploratory Cycle 7 calibration proposal (7666) has been used to show that at low count levels the STIS CCD shows significant suppression of counts. The intensity and position dependence of the effect is consistent with CTE. (See Gilliland, Goudfrooij, and Kimble 1999, PASP, 111, 1009) A number of questions/issues came up in analyzing the existing calibration data that can only be pursued with more extensive observations: (1) This program will determine if suppression exists at higher background levels. (2) An x-dependence will be tested for. (3) Accurate results will be obtained for both spectroscopy and imaging modes. The best parts of the Cyc 8 CTE test (8415) are retained and strengthened while dropping one less robust visit.

The basic technique is to observe a sparse field of stellar sources (~500-1000 imaging, ~50 spectroscopy). Exposures are cycled through at short, medium and long exposures (X5 steps). For the two targets (NGC6752 - imaging, NGC346 - spectroscopy) the observations are done in the CVZ and the cycle of short to long exposures is repeated X3 in one CVZ orbit assuring that a subset of the exposures will be obtained at significantly higher sky background levels. Analysis consists of ratioing extracted counts at the different exposure times and seeking a solution (based on Stetson 1998, PASP, 110, 1448 equations) for CTE correction coefficients that linearizes the full set of counts. Half of the total data set will be obtained using Amp B allowing for robust measurement of the parallel CTE with a well-posed, simpler technique of comparing object counts detected with these symmetric Amps.

Fraction GO/GTO Programs Supported

30%

Resources Required:

- **Observation** 6 external orbits
- **Analysis** 2 FTE weeks

Products ISR or PASP paper; algorithm for calibration and coefficients.

Accuracy CTE correction coeffs will be determined to a relative 1% accuracy; photometry should not be limited by 1% accuracy after correction for CTE.

Scheduling & Special Requirements First two visits are CVZ. For both Visits it would be good to set the Bright Earth Avoidance angle to 16 degrees and schedule the orbit at this limiting time.
Proposal ID 8912: CCD Full-Field Sensitivity Monitor

Plan

Purpose Monitor CCD sensitivity over the whole field of view.

Description Measure a photometric standard star field in Omega Cen in 50CCD mode every few months to monitor CCD sensitivity over the whole field of view. Keep the spacecraft orientation within a suitable range (+/- 5 degrees) to keep the same stars in the same part of the CCD for every measurement. The second observation is performed at an orientation rotated by 180 degrees with respect to the other observations to study the effect of CTE (to first order). This test will give a direct transformation of the 50CCD magnitudes to the Johnson-Cousins system for red sources. These transformations should be accurate to 1%. The stability of these transformations will be measured to the sub-percent level. These observations also provide a check of the astrometric and PSF stability of the instrument over its full field of view. Follow on to 8847.

Fraction 40%

GO/GTO Programs

Supported

Resources 2 external orbits

Required:

Observation

Resources 2 FTE weeks

Required:

Analysis

Products ISR, STAN, IHB

Accuracy 1%

Goals

Scheduling & Special

Requirements

One visit about every six months. Orient at 130 to 154 and 310 to 359.
Proposal ID 8913: Slit Wheel Repeatability

Plan

Purpose To check the stability of the STIS slit wheel by taking a sequence of comparison lamp spectra with grating G230M (3055) and 3 different slits.

Description Verify the repeatability of the slit wheel for 3 STIS slits (52X0.2, 52X0.1, and 52X0.05) by taking images with the Pt/Cr/Ne lamp and the MAMA detector. Use the G230M (3055) grating with the NUV-MAMA, and rotate the slit wheel among the 3 chosen slits.

Fraction 100%

GO/GTO Programs Supported

Resources Required: 1 internal orbit

Observation

Resources Required: 2 days

Analysis Products ISR

Accuracy Goals 0.1 pixel

Scheduling Special Requirements Between March and May 2002.
Proposal ID 8914: CCD Sensitivity Monitor

Plan

Purpose Monitor sensitivity of each CCD grating mode to detect any change due to contamination or other causes. Also monitor the STIS focus in an imaging mode.

Description Obtain exposures in each of the 3 low-resolution CCD spectroscopic modes every 3 months, and in each of the 3 medium-resolution modes every 6 months, using the same high-declination calibration standard, and ratio the results to the first observations to detect any trends. Also repeat one of the M mode exposures with Gain=4. In addition, each quarterly L sequence will be preceded by a CCD/F28X50OII direct image to monitor the focus.

Fraction 100%

GO/GTO Programs Supported

Resources Required:
- **Observation** 6 prime orbits
- **Analysis** 3 FTE weeks

Products Interim reports and ISRs on sensitivity and focus monitors. Wavelength-dependent trends for implementation of pipeline corrections.

Accuracy Goals 2% at wavelength of least sensitivity

Scheduling & Special Requirements
- 1 orbit every 3 months for L modes
- 1 additional orbit every 6 months for M modes
Proposal ID 8924: CCD PSFs & LP Filter Curve Calibration

Plan

Purpose
Primary goals are to better constrain the long wavelength CCD imaging throughput as a function of wavelength and to fill out the collection of deep dithered PSF images.

Description
Take high S/N G230LB, G430L, and G750L spectra, and well dithered, photometric 50CCD and F28X50LP images of the F8 star CPD-60D7585 = SAO 255271, and an early K star with V near 10.5. The measured spectral energy distributions will be compared to the imaging count rates and used to improve our understanding of the wavelength dependant throughput for the CCD imaging modes. We need such data for stars of various colors because STIS has such wide imaging bandpasses it is difficult to constrain the sensitivity vs. wavelength with only the usual hot WD standards. We will also obtain deep dithered images of the K star to add to the PSF library, filling out a gap in our color distribution.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>11%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO/GTO Programs Supported</td>
<td></td>
</tr>
<tr>
<td>Resources Required:</td>
<td>3 external orbits</td>
</tr>
<tr>
<td>Observation Resources Required:</td>
<td>3 FTE weeks</td>
</tr>
<tr>
<td>Analysis Products</td>
<td>Revision to CDBS and SYNPHT throughput tables. Individual and coadded images to be added to STIS PSF library. STAN report, ISR, and IHB updates as appropriate.</td>
</tr>
<tr>
<td>Accuracy Goals</td>
<td>2% goal for photometric accuracy of 50CCD & 50LP modes. Actual S/N of individual exposures will be 100:1.</td>
</tr>
</tbody>
</table>

Scheduling & Special Requirements
Before Aug. 01, 2001
Proposal ID 8925: Coronographic PSFs

Plan

Purpose We propose filling in a gap in the STIS coronographic PSF library with observations of two, nearby, minimally reddened, single, isolated F stars at the two most commonly used wedge positions WEDGEA1.0, and WEDGEA1.8.

Description Analysis of STIS coronagraphic imagery has shown that color mis-matches between the science target and the PSF star become significant for delta ((B-V)=0.08), with systematic errors introduced by the mismatch dominating PSF subtraction residuals and precluding detection of circumstellar nebulosity, or its reliable interpretation. We propose filling in a gap in the PSF library over 0.2<B-V<0.7 with observations of one (B-V)=0.37 and one (B-V)=0.5 star. A similar gap from 0.9<B-V<1.6 will be filled in as part of a cycle 10 GO program (9136). The observations will be made at WEDGE-A1.0 and WEDGE-A1.8.

Fraction 0%

GO/GTO Programs Supported

Resources Required:
- Observation: 2 external orbits
- Analysis: 1 FTE weeks

Products PSF images, ISR

Accuracy Goals 1%; The S/N of each CR-SPLIT=8 observation set will be comparable to that obtained in typical GO/GTO coronagraphic observations. The goal is to have the individual subexposures as well exposed as possible without saturating anywhere in the image (<30000 DN everywhere).

Scheduling & Special Requirements HR413 should be observed as CVZ target.

Plan

Purpose Measure CTI in the spectroscopic image of an extended source with absorption lines, for application to science observations of galaxies. Examine effects of CTI on absorption line profiles.

Description Make long-slit spectroscopic images of a nearby luminous galaxy with a bright nucleus. Use the G430L grating to get a wide range of counts across the spectrum (near zero at the blue end). Make the observations with the newly defined aperture at row 900 to place the spectrum near the D amp and far from the B amp. Make readouts with both amplifiers to measure CTI-induced differences dependent on the readout distance. Use an along-the-slit dither instead of CR-SPLIT to take care of hot pixels as well as CR.

Fraction GO/GTO 23% of CCD; 11% of total

Programs Supported

Resources Required:
- Observation: 2 external orbits
- Analysis: 1 FTE week

Products ISR

Accuracy Goals For a single column in a 7-row extraction: 4.1% at the depth of the Ca H and K lines, 2.3% at the peak 2.4% at the depth of the G band, 1.9% at the peak 1.7% at the depth of the Mg b line, 1.5% at the peak.

Greater (more easily measured) CTI at lower signal levels helps compensate for lower S/N at lower signal levels. Measurements were made from a spectrum in the archive.

Scheduling & Special Requirements when the row 900 "aperture" is available.
Proposal ID 8928: STIS PSFs at Pseudo-Apertures

Plan

Purpose Measure PSFs for the spectroscopic pseudo-apertures with the CCD for stars of different spectral types.

Description Spectroscopic PSF Measurements are performed for the new pseudo-apertures located near CCD row 900, which are made available to ameliorate CCD CTE losses. We plan to acquire a set of deep spectroscopic images of isolated point sources with STIS for the purpose of correcting spectroscopic science observations for dispersed residual scattered light along the slit from the (point-like) central object. PSFs are obtained for the 52x0.05E1, 52x0.1E1, 52x0.2E1, and 52x0.5E1 slits. Every CCD Low-resolution grating is being used, as well as heavily used Medium-resolution modes. Two bright stars will be observed: A G dwarf and a K giant. These spectral types are similar to those of popular science projects using the pseudo-apertures for which accurate knowledge of the PSF is important. For very hot stars or AGNs, PSFs can be constructed from data taken within the cycle 10 calibration proposal "Spectroscopic Sensitivity Workout: First-Order Modes".

Acquire target stars and perform peak-up for the 52X0.05E1 position. Then take deep exposures for the G230LB, G430L, G430M/4961, G750L, G750M/6581, and G750M/8561 modes. Reach ~15,000 electrons in the central pixel and use GAIN=4 to profit from the larger dynamic range than GAIN=1. Exposures are taken using the slits 52x0.05E1, 52x0.1E1, 52x0.2E1, and 52x0.5E1.

Fraction GO/GTO Programs Supported 0%

Resources Required:

- **Observation:** 4 external orbits
- **Analysis:** 3 FTE weeks

Products PSFs on web, IHB, STAN

Accuracy Goals 5% at 1e-6 of central flux.

Scheduling & Special Requirements Before SM3B
Proposal ID 8929: First-order LSFs for Pseudo-Aperture Locations

Plan

Purpose Measure the LSFs for the CCD spectroscopic modes at the new pseudo-aperture locations.

Description The aim of this proposal is to measure the LSFs at the pseudo-aperture locations of the CCD modes. For the G750L and G430L gratings, the observations will be done with a point source with emission lines (V1016 Cyg). For the M-modes, point sources with emission lines are mostly unsuitable because of line-width constraints. So a diffuse source with narrow emission lines (Hen 1357, which has an abundance of emission lines from UV to IR, with line widths of the order of 8 km/s) will be observed with the 0.05 arcsec slit. The observed LSFs can then be convolved using the L-mode observations with different slits at appropriate wavelengths. In addition, a point source with narrow absorption lines (51 Peg) will also be observed using different slits for the M-modes. A few observations will be taken at the central location of the slit for comparison and rederivation of the LSFs.

Fraction 10%

GO/GTO Programs Supported

Resources Required:

- **Observation:** 12 external orbits
- **Analysis:** 6 FTE weeks

Products ISR

Accuracy Goals 0.1 pixels

Scheduling & Special Requirements
Proposal ID 8930: Effect of the optical baffles on STIS CCD imaging.

Plan

Purpose
The count levels will be compared with contributions expected from the PSF and any extra scattering components will be investigated.

Description
The optical baffles around the edge of the STIS detector may affect some images. This proposal will investigate whether the baffle structures scatter light from the stars outside the CCD detector into the detector’s field of view, and if so, by how much. In addition, this proposal will also investigate whether an effective coronographic capability can be established by partial closing of the detector and placing the bright star at the closed part of the detector. Thus this proposal has two parts: The first part (1st visit) is to investigate the effect of the stars outside the STIS CCD detector on the STIS images. The idea would be to image a bright star at various positions outside the field and check for scattered light on the detector. This part will include two exposures taken with the star at the occulted part of the LP-filter. The second part (second visit) is to attempt to place a bright star on the edge of a partially aperture, and check for any scattering components by the aperture. If the scattering is small, this method may be used as a very effective coronographic aperture.

Fraction
~2%

GO/GTO Programs Supported

Resources Required:

- **Observation**
 - 3 external orbits

- **Analysis**
 - 2 FTE weeks

- **Products**
 - Web, IHB

- **Accuracy Goals**
 - 1% scattering due to baffle structures.

- **Scheduling & Special Requirements**
 - Visit 01 before Sept 2001
Proposal ID 8917: STIS MAMA Dispersion Solution Check

Plan

Purpose To obtain deep engineering wavecals for all MAMA gratings at several wavelength centers as a yearly monitor of derived dispersion solutions. For Cycle 10 we have added additional settings for which no on-orbit engineering wavecal data exists as yet. These settings are secondary grating tilts that have been used by PIs. The settings (with engineering wavecal exposure times in parentheses) are as follows:
- E230M 2124 (159 s), 2415 (136 s)
- E230H 1913 (936 s), 1963 (734 s), 2063 (513 s), 2163 (445 s), 2363 (456 s), 2413 (457 s), 2463 (1267 s), 2563 (750 s), 2613 (647 s), 2663 (743 s), 2862 (732 s), 2962 (145 s)
- E140H 1343 (386 s), 1380 (388 s), 1489 (313 s), 1526 (348 s), 1562 (452 s)

Description Wavelength dispersion solutions will be determined on a yearly basis as part of a long-term monitoring program. Deep engineering wavecals for each MAMA grating will be obtained. Wavelength centers will be selected at extreme and central settings of each grating. Intermediate settings will also be taken to check the reliability of derived dispersion solutions. Only Prime modes have been selected for observation in this program. The purely internal wavelength calibrations will be taken using the Pt/Cr-Ne (CIM) line lamp and the appropriate 2 pixel wide supported slit. Total exposure time in this proposal: 16155 s. Total exposure time in Cycle 9 Phase 2 (8859): 6148 s

Fraction GO/GTO Programs Supported 23.7%

Resources Required: 10 internal orbits

Observation Resources Required: 2 FTE weeks

Analysis Products A STIS ISR providing the derived wavelength dispersion solutions for the configurations specified. Updates to CDBS will be made as necessary.

Accuracy Goals 0.1 pixels; Count rates and exposure times are based upon previous calibration observations, or from pre-flight testing. Exposure times based on the IDT pre-flight testing tables are designed to ensure 2e5 cts in the E230M, and 1e5 cts in the E230H mode.

Scheduling & Special Requirements before 1 Nov 2001 (i.e. prior to SM3B)
Proposal ID 8918 MAMA Full-Field Sensitivity

Plan

Purpose To monitor the sensitivity of the FUV-MAMA and NUV-MAMA over the full field.

Description By observing the globular cluster NGC6681 once every 6 months at roughly the same orientation (to keep the same stars in the same area of the detectors) we will monitor the full field sensitivity of the MAMA detectors and also monitor the astro-metric and PSF stability. These observations will be used to look for contamination, throughput changes, or formation of colour centers in the photocathode and window that might be missed by spectroscopic monitoring or difficult to interpret in flatfielding.

Fraction 21% of all STIS prime + parallel proposals (i.e. all STIS MAMA proposals), based on Cycle 9 proposals

GO/GTO Programs

Resources Required: 6 external orbits

Observation Resources Required: 10 FTE weeks

Analysis Products ISRs, phometric and astrometric accuracy and stability information for GOs and reference files.

Accuracy Goals 1%

Scheduling& Special Requirements
Proposal ID 8919: MAMA Sensitivity and Focus Monitor

Plan

Purpose Monitor sensitivity of each MAMA grating mode to detect any change due to contamination or other causes. Also monitor the STIS focus in a spectroscopic and an imaging mode.

Description Obtain exposures in each of the 2 low-resolution MAMA spectroscopic modes monthly, in each of the 2 medium-resolution modes every 2 months, and in each of the 4 echelle modes every 6 months, using unique calibration standards for each mode, and ratio the results to the first observations to detect any trends. In addition, each monthly L sequence will be preceded by two spectroscopic ACQ/PEAKs with the CCD/G230LB and crossed linear patterns, with the purpose of measuring the focus (PSF across the dispersion as a function of UV wavelength); and each bimonthly M sequence will be preceded by a CCD/F28X50OII direct image also to monitor the focus.

Fraction 100%

GO/GTO Programs Supported

Resources Required:

Observation Resources 22 external orbits

Analysis Resources 8 FTE weeks

Products Interim reports and ISR on sensitivity monitor. Wavelength-dependent trends for implementation as pipeline corrections. ISR on focus monitors. If the focus quality is found to degrade significantly, a separate program to take corrective action (such as an adjustment of the STIS tip/tilt mirror) may be implemented.

Accuracy Goals Minimum S/N of 50 at the wavelength of least sensitivity for L modes, and at the central wavelengths for M and E modes. 10% for focus changes, i.e FWHM of the profile across the dispersion.

Scheduling & Special Requirements 1 orbit monthly for L modes plus focus monitor; 1 orbit every 2 months for M modes plus image; 2 orbits every 6 months for E modes.
Proposal ID 8920: MAMA Dark Monitor

Plan

Purpose
This test performs the routine monitoring of the MAMA detector dark noise. This proposal will provide the primary means of checking on health of the MAMA detectors systems through frequent monitoring of the background count rate. The purpose is to look for evidence of change in the dark rate, indicative of detector problems developing. Follow-on to proposal 8843.

Description
Two times a week, 1, 23min, exposure is taken with the FUV and NUV MAMAs with the shutter closed. The exposures are taken in ACCUM mode. The length of the exposures is chosen to make them parallels.

Fraction 65%

GO/GTO Programs Supported

Resources Required: Observation
208 internal orbits

Resources Required: Analysis
8 FTE weeks

Products
CDBS DRK files; ISR

Accuracy
1%; Each measurement will give a statistical uncertainty of 1% for the global dark rate.

Scheduling & Special Requirements
Schedule two visits per week for each detector. Adjust schedule to follow completion of 8843.
Proposal ID 8921: MAMA Fold Distribution

Plan

Purpose The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain.

Description While globally illuminating the detector with a flat field the valid event (VE) rate counter is monitored while various combinations of row and column folds are selected. The procedure is implemented using special commanding and is the same for the FUV and NUV MAMAs with the exception of the gratings/aperture/lamp combinations used for the flat fields. The procedure is described in STIS ISR 98-02

Fraction 50%
GO/GTO Programs
Supported Resources 4 internal orbits
Required: Observation
Resources 3 days
Required: Analysis
Products The Engineering Team releases it’s Fold Analysis findings bi-annually.

Accuracy 95%
Goals
Scheduling
Special Requirements
This proposal should execute in the spring and fall every year.
Proposal ID 8922: MAMA FUV Flats

Plan

Purpose This program will obtain FUV-MAMA flat-field observations with the Kr lamp for the construction of pixel-to-pixel flats with a S/N of 100 per low-res pixel.

Description This program will obtain a set of FUV-MAMA flat-field observations with sufficient counts to construct pixel-to-pixel flat fields (P-flats) for all modes. Approximately 10 visits will be required to construct a P-flat with S/N = 100 per low-res pixel. Experience with pre-flight and on-orbit monitoring flats show that the flat-field characteristics are in large measure color- and mode-independent, so that high-quality P-flats constructed with the G140M settings should suffice for all FUV-MAMA spectroscopic and imaging programs.

This Cycle-10 calibration program calls for obtaining flats with G140M at 1387 Ang with 5 SLIT-STEP positions to illuminate regions of the detector normally shadowed by the slit fiducial bars. The most recent global count rate with the 52x0.05 aperture and a cenzone of 1420 was 227,720 count/s (o6bo07myq). After 3 remaining exposures in the Cycle 9 program are executed, the count rate is expected to have declined to 218,600 count/s. This is still too high to allow use of the 52x0.1 aperture and cenzone of 1470, which would roughly double the global count rate. Using using a cenzone of 1387 will bring the count rate back up to 228,200 count/s.

Fraction GO/GTO 35%

Programs Supported

Resources Required: 10 internal orbits

Observation

Resources Required: 4 FTE weeks

Analysis

Products reference file (P-flat), ISR

Accuracy 1.0% (0.6% if combined with all previous P-flats). Accuracy is per low-res pixel (2x2 high-res pixels)

Goals

Scheduling & Special Requirements Best if observations occur after servicing mission 3B, or about one year after the Cycle 8 flats have concluded, whichever is last. This will permit an analysis of the effect of the elevated s/c temperature on the lamp output. Visits should be scheduled such that at least 6 hours elapse between the end of one visit and the beginning of the next, in order to let the lamps cool sufficiently.
Proposal ID 8923: MAMA NUV Flats

Plan

Purpose This program will obtain NUV-MAMA flat-field observations with the D2 lamp for the construction of pixel-to-pixel flats with a S/N of 100 per low-res pixel.

Description This program will obtain a set of NUV-MAMA flat-field observations with sufficient counts to construct pixel-to-pixel flat fields (P-flats) for all modes. Approximately 10 visits will be required to construct a P-flat with \(S/N = 100 \) per low-res pixel. Experience with pre-flight and on-orbit monitoring flats show that the flat-field characteristics are in large measure color- and mode-independent, so that high-quality P-flats constructed with the G230M settings should suffice for all NUV-MAMA spectroscopic and imaging programs. This Cycle-10 calibration program calls for obtaining flats with G230M at 2579 Ang with 5 SLIT-STEP positions to illuminate regions of the detector normally shadowed by the slit fiducial bars. The most recent global count rate with the 52x0.2 aperture and a cenwave of 2419 was 196536 count/s (o6bp04jdw). After 6 remaining exposures in the Cycle 9 program are executed, the count rate is expected to have declined to 210,200 count/s. Using using a cenwave of 2579 will bring the count rate back up to 262,500 count/s.

Fraction GO/GTO 40%

Programs Supported

Resources Required: 10 internal orbits

Observation

Resources Required: 4 FTE weeks

Analysis

Products reference file (P-flat), ISR

Accuracy 1.0% (0.5% if combined with all previous P-flats). Accuracy is per low-res pixel (2x2 high-res pixels)

Goals

Scheduling & Special Requirements Best if observations occur after servicing mission 3B, or about one year after the Cycle 8 flats have concluded, whichever is last. This will permit an analysis of the effect of the elevated s/c temperature on the lamp output. Visits should be scheduled such that at least 6 hours elapse between the end of one visit and the beginning of the next, in order to let the lamps cool sufficiently.
Proposal ID 8915: Spectroscopic Absolute Sensitivity: Echelle Gratings

Plan

Purpose
We will observe the flux standard G191B2B, obtaining echelle spectra in all primary and intermediate wavelength settings. For many of the intermediate wavelength settings, this will be the first STIS observation of a flux standard. By comparing observed and model spectra, we will construct calibration reference files describing spectroscopic sensitivity.

Description
We will obtain a peak S/N ratio of 30 per resolution element for E140M, E140H, and E230M, and a peak S/N ratio of 20 for E230H. The spectra will be noisier than previous flux calibration data, but all central wavelengths will be covered with sufficient S/N to obtain sensitivity curves accurate to better than 0.1% for all echelle orders.

Fraction GO/GTO Programs Supported
16% all echelle observations

Resources Required:
Observation
18 external orbits

Analysis
Products
New CDBS absolute sensitivities for echelle modes.
Accuracy Goals
Peak S/N ratio of 20 per resolution element for E230H. Peak S/N ratio of 30 per resolution element for all other modes. Tests with existing calibration spectra indicate that a fourth order polynomial is adequate to describe the ripple or blaze of echelle orders. Monte Carlo analysis indicates a maximum error of 0.1% in a fourth order polynomial fitted to data with a peak S/N ratio of 20 per resolution element. Errors of 0.1% are well below other sources of error in our flux calibration procedure.

Scheduling & Special Requirements
High priority. As of April 2001, 41% of archival E230M spectra and 16% of all archival echelle spectra were obtained with intermediate wavelength settings. Most of the intermediate wavelength settings have only ground calibration data based on models. This results in 15% discontinuities in flux in regions of order overlap. This is by far the largest source of error in our current flux calibration. These observations will reduce the error by a factor of 3-5, and hence should be scheduled promptly.
Proposal ID 8931: STIS FUV/NUV MAMA Anomalous Recovery

Plan

Purpose This proposal is designed to permit recovery of the NUV or FUV MAMA detector after an anomalous shutdown.

Description Anomalous shutdowns can occur as a result of bright object violations which trigger the Bright Scene Detection or Software Global Monitors. Anomalous shutdowns can also occur as a result of MAMA hardware problems. The anomalous procedure consists of three procedures, a signal processing electronics check, high voltage ramp-up to an intermediate voltage and high voltage ramp-up to the full operating voltage. During each of the two high voltage ramp-ups, diagnostics are performed during dark and flat field ACCUMs.

Fraction 25%

GO/GTO Programs Supported

Resources Required:
- **Observation Resources** N/A
- **Analysis Required:**
 - **Products** N/A
 - **Accuracy Goals**
- **Scheduling & Special Requirements** As needed
Proposal ID 8916: Spectroscopic Absolute Sensitivity: First-Order Gratings

Plan

Purpose We will observe the primary flux standards G191B2B, GD71 and GD153, obtaining first-order spectra in all supported (primary + secondary) wavelength settings. For many wavelength settings, this will be the first STIS observation of a primary flux standard. By comparing observed and model spectra, we will construct calibration reference files describing spectroscopic sensitivity.

Description For the MAMA & CCD L-modes, we will obtain S/N = 100 spectra to get a good measurement of the STIS throughput. For the FUV-MAMA L modes, this will be performed at both the current MSM default location (3" below the repeller wire) and the old (before Sep 1998) default location (3" above the repeller wire), for accurate cross-calibration. 1% accuracy for this cross-calibration requires measurements for 2 stars at several epochs. We propose to obtain 1 epoch with GD71 (which was observed once in an earlier cycle as well) and 5 epochs with GD153. For the M modes, we will obtain a peak S/N ratio of 25 per resolution element per exposure for G140M and G230M, and a peak S/N ratio of 50 per exposure for G230MB, G430M, and G750M (to mitigate CTE losses for the CCD). These spectra will be noisier than previous flux calibration data, but all central wavelengths will be covered with sufficient S/N to obtain sensitivity curves accurate to better than 0.1% for all settings.

Fraction GO/GTO

41% first order spectra

Programs Supported

Resources 22 external orbits

Required: Observation

Resources

Required: Analysis

Products New CDBS absolute sensitivity reference files; ISR.
Plan

Accuracy <1%; Tests with existing calibration spectra indicate that a fourth order polynomial is adequate to describe the blaze function of the gratings. Monte Carlo analysis indicates a maximum error of 0.1% in a fourth order polynomial fitted to data with a peak S/N ratio of 20 per resolution element. Errors of 0.1% are well below other sources of error in our flux calibration procedure. The total error (including time dependences of throughput and CTE for the CCD) will stay below 1%.

Scheduling & Special Requirements High priority. As of April 2001, 41% of archival first-order spectra were obtained with wavelength settings that don’t have direct throughput measurements yet. Those wavelength settings have only ground calibration data based on models. These observations will reduce uncertainties significantly, and hence should be scheduled promptly.
Proposal ID 8926: Filter Throughput Monitor

Plan

Purpose To check the wavelength dependant throughput of the more commonly used STIS imaging filters. The intent is to repeat this monitor every other year.

Description This program takes slitless spectra through the more commonly used MAMA and CCD filters to check for any change in the wavelength dependant filter throughputs. These observations repeat a subset of those done in Cycle 7 STIS/CAL programs 7657 and 7661. This program only does observations at the standard target position and does NOT check ND filters, redleaks, or the F25LYA filter. We have added new G430M observations with 50CCD and F28X50OIII that will allow the wavelength dependance of this very narrow filter to be better resolved. One orbit is needed for the NUV and FUV MAMA filter measurements and one orbit for the CCD filters.

Fraction GO/GTO Programs Supported
41% first order spectra

Resources Required:
Observation
2 external orbits

Resources Required:
Analysis
2 FTE weeks

Products Updates to throughput curves, STAN, & ISR if any significant changes are found.

Accuracy Goals
1%; For most modes the spectra will have S/N100:1 at peak of throughput curve.

Scheduling & Special Requirements