Space Telescopes after JWST

Steven Beckwith
Space Telescope Science Institute

SPIE, San Diego
August 3, 2003
Evolution of our understanding

- Uncover (“discover”) the unseen
 - Catalog the universe
 - Adduce the physical laws
 - Understand the reason for it all

- Local to the distant, minor to major components
 - Solar system - Milky Way - galaxies - recombination
 - Planets - Stars - Galaxies - Structure

- What is next?
 - We have many questions to address with known techniques
 - Traditional exploration is getting increasingly expensive
 - Resolution & sensitivity improvements require large structures
 - Gains available in sky coverage and time domain
 - Surveys with dedicated telescopes
Astrophysics in the New Millennium

- Astronomy & Astrophysics in the New Millenium
 - How did the universe begin and evolve to its present state?
 - Age, amount & distribution of matter and energy, and history
 - How do galaxies form and evolve?
 - Dawn of the modern universe
 - How are black holes created?
 - How do stars form and evolve?
 - How do planets form and evolve?
 - Is there life elsewhere in the universe?

- Quarks to Cosmos:
 - What is the dark matter?
 - What is the nature of the dark energy?
 - How did the universe begin?
 - How do cosmic accelerators work and what are they accelerating?
 - How were the elements from iron to uranium made?
How difficult are these questions?

- **Astronomy & Astrophysics in the New Millenium**
 - The heavy elements from iron to uranium
 - Dark matter: distribution & effects
 - Dark energy: presence, distribution, and evolution
 - Creation and evolution of the universe
 - Galaxy creation: the dawn of the modern universe
 - Stellar birth and evolution
 - Black holes
 - Planetary birth and evolution

- **New technology (interferometers)**
 - Radically new technology: large apertures, enormous baselines

Hubble-like

JWST-like
Exploration: angular resolution

Courtesy of Martin Harwit (2002)

Schwarzschild radius of 1 Solar mass black hole across the Galaxy

- 1959
- 1979
- 1999

$10^8 M_\odot$ BH

1 km

10 Mpc

Earth @ 10 pc

Jupiter @ 10 pc

HST

JWST

10 m

$1''$

Log [wavelength (cm)]

Angular resolution: log(radians)

Pair production

Absorption limit

Limit to solar system based observations

Interstellar absorption limit

Exploration: angular resolution

Courtesy of Martin Harwit (2002)
Resolution & Collecting Area

Filled apertures

Dark matter
Dark energy
Elements
Galaxies
Stars, SN

Sparse apertures

Baseline (m)

Area^{1/2} (m)

10^4
Kepler: eclipsing exo-planets

Kepler: dedicated telescope to discover eclipsing exo-planets

- 1.4 m telescope (Hubble-like), 903 kg
- 4 years, Earth-trailing heliocentric
- Photometer: 10^8 pixels, $1\square < 10^{-5}$ noise
- 100,000 stars, one field, 5 Gbits/day
SuperNovae Acceleration Probe

SNAP: dedicated telescope to study distant SN & dark energy

- 2 meter telescope, 2 yr mission (minimum),
- Fixed focal plane, essentially no moving parts
- Optical photometry: 1°x1° giga-pixel mosaic camera, 0.35-1\(\mu\)m
- Infrared photometry: 1’x1’ FOV, HgCdTe array (1-1.7 \(\mu\)m)
- Integral field optical & IR spectroscopy: 0.35-1.7 \(\mu\)m, 2”x2” FOV
Proposed surveys with space telescopes

- Galaxy, AGN evolution
 - HST/ACS
- Supernovae Ia, □
 - HST/ACS+NICMOS, SNAP
- Extra-solar planetary systems
 - HST/ACS Galactic bulge
 - Kepler
- Astrometric surveys
 - SIM, GAIA

<table>
<thead>
<tr>
<th>□ (m)</th>
<th>2m Space</th>
<th>10 Mag</th>
<th>t (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>30.7</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>28.9</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>28.1</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>27.3</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>26.8</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>24.9</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td>24.4</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>23.9</td>
<td>176</td>
<td></td>
</tr>
</tbody>
</table>

Composition of the Cosmos

- Heavy elements: 0.03%
- Ghostly neutrinos: 0.3%
- Stars: 0.5%
- Free hydrogen and helium: 4%
- Dark matter: 30%
- Dark energy: 65%

- □ □ ~ □/D
- B_0 ~ Zodiacal l
- FOV ~ optics l

HST WFPC2 SN SEARCH in HDFS by SNZ

Ingress Eclipse Egress
Resolution & Collecting Area

Filled apertures

- Dark matter
- Dark energy
- Elements
- Galaxies
- Stars, SN

Sparse apertures

- Exo-Earth imaging
- Black holes, Cosmic jets

Baseline (m)

Area^{1/2} (m)

- HST
- Exoplanets Vis
- Exoplanets IR
- Exo-Jupiter imaging

Dark matter

8/03/03
Cost of Space Telescopes

http://www.jsc.nasa.gov/bu2/AMCM.html
Mirror Technology Development

At start of conceptual design:

Mirror area density, diameter, cost and schedule were ~10x higher than JWST goals

Manufacturing Time/Unit Area
- HST (2.4 m) ≈ 1 year/m²
- SIRTF (0.9 m) ≈ 3 years/m²
- JWST (6 m) ≈ 1 month/m²

JWST AMSD: ~15 kg/m²
Kodak AMSD Mirror

- 1.4 m Diameter Semi-Rigid ULE Closed-Back Mirror
- Graphite Epoxy (M55J) Reaction Structure by COI.
- Reaction structure complete
 - Thermal cycled to 113°C
- 16 Force Actuators by Moog
 - 7 for wavefront & radius
Technology Development for Optimum Integration of Human and Robotic Roles

Courtesy of Rud Moe, Goddard Space Flight Center, April 2003
Interferometers: TPF, PI

- Baselines: 30m - 30 km
- Element sizes: 4 - 10m
- Required resolution:
 - <0.1 arcsec (IR nulling)
 - <10^{-5} arcsec (Jupiter)
 - <10^{-6} arcsec (Earth)
Beyond JWST

How will we build and maintain large telescopes in space?

- Mirrors will be large
 - Filled apertures \sim10 - 100 m or more
 - Interferometer elements: \sim3-10 m, separations \sim100 - 1000 m

- Goal: 10 kg/m2 for entire telescope (mirror + structure, instruments and spacecraft)
 - Typical cost 2-5 billion
 - Construction: in space, by humans or robots
 - Replacement or upgrade may be difficult

- Return on investment
 - Service the degradable items
 - Upgrade instruments through servicing
 - Humans
 - Robots
Large optical coronagraph contrast $> 10^{10}$

Large optical coronagraph
- Giant exoplanets
- Young exoplanets

CS disks & rings
Exozody clouds

Large optical light bucket
- Census of exoplanets
- Exoplanet atmospheres

Disk chemistry
H_2 spectra of disks
Disk structure, gaps, rings

HST-like: UV spectra
$\Delta I/\Delta D$

Atmospheres of SS planets
Occultation of stars
Composition of bodies
Ring dynamics

Stellar winds
TTS in LMC
Binary stars
Stellar pops
IGM Baryons
Microlensing
$\alpha(z)$ (e^2/hc)

Large optical coronagraph

HST-like UV
Large Optical