Enabling Technologies for the Next Generation of UV-Optical Missions

James C. Green
University of Colorado
Technology and Missions: Chicken or Egg?

- What drives the selection of the next mission: science drivers or technical capability?
- Science question → mission concept → technical requirements → technology funding (NGST/TPF)
- New technological development → new astronomical capability → new mission to utilize capability (FUSE)
Only Large Missions Can Afford the First Approach

- Explorers, discovery, etc. missions wait for available technology and then propose the best possible science with them. Typically, they address questions that have been around for a while.
- Giga-missions (+ $1B) should start with the question (TPF)
- NASA needs both kinds
Examples:

- **Copernicus → FUSE**
 - (coatings, detectors)
 - local astronomy → galactic astronomy
 - next generation → extragalactic FUV

- **IUE → GHRS → STIS → COS**

- **COBE → MAP**
Generic UV - Optical Technology Drivers

- Optics:
 - size with high figure quality
 - size w/o high figure quality
 - ultra-low scatter
 - efficient wide field designs
 - better dispersive optics (aberration control/scatter/efficiency)
 - new transmitting materials
UV - Optical Technology Drivers

- Detectors
 - larger format
 - long-life / slow space degradation
 - lower background
 - higher efficiency
 - energy resolving
 - higher dynamic range
Example Science Goals for the Next Generation of non-G$^\bullet$ UV/optical missions

- The baryon census in the modern universe
- D/H as a function of z
- The dynamics and recycling of the interstellar medium
- The proto-extra-solar system environment
- NONE OF THESE WILL SELL AN HST CLASS MISSION
Where we have been:

- As a community we have proposed to build the best possible successor to HST: the largest possible mirror, best possible detectors, greatest field of view and most sensitive spectroscopy - we have then enumerated the many science objectives that can be achieved with such an instrument: all true -

- This has not produced a viable NHST, and will not in the current environment.
Where we need to go:

1: Develop of community consensus on the over-arching scientific objective of a single, great observatory

2: This need not, in fact, should not be a technically viable mission with today’s technology

3: Get this scientific vision into the strategic plan, and a mission concept identified with it
Where we need to go: (II)

- 4: Identify the technology drivers needed, including spacecraft, electronics, propulsion, etc.
- 5: As these technologies develop, spin-off concepts for SMEX, MIDEX or smaller class missions will spontaneously arise from the community
- 6: When built, the NHST will of course, do much more than the over-arching goal
An example

- The Ultimate Sky Survey
 - Deeper than ever, with greater spatial resolution than ever - catalog the universe

- Technology Drivers:
 - Huge format detectors
 - Ultra low noise, radiation tolerant detectors
 - “UVB” class energy resolution
 - operate out of the ecliptic to control zodiacal light (nuclear)
 - process and telemeter vast amounts of data
Potential Spin-offs

- Ultra-large detector formats:
 - Type Ia SN searches
 - Microlensing searches

- Nuclear power and propulsion
 - planetary missions
 - in situ ISM measurement

- Energy resolution
 - simultaneous color photometry of time variable events - reverberation mapping
Conclusions:

What can NASA do?

- Fund enabling technology from both directions. Do not require that technology directly support an identified mission in the strategic plan.
- For non-mission specific research - keep all areas moving forward: detectors, optics, structures, mission implementation
Conclusions: What can the UV-optical community do?

1: Develop a vision for NHST that has a “killer-ap” and push it single-mindedly.
2: Choose a truly ambitious goal.
3: Stop worrying how an approved NHST might weaken support for your pet program.
4: Do this soon.