AR 13897 (Archival Research)

Sun Jul 14 20:01:34 GMT 2024

Principal Investigator: Annalisa Pillepich
PI Institution: Max Planck Institute for Astronomy
Investigators (xml)

Title: Clusters of Galaxies in the last 5 Billion Years: from the Brightest Cluster Galaxy to the Intra-Cluster Light
Cycle: 22

Understanding the physical processes which shape the galaxy population in the high density environment of galaxy clusters as a function of cosmic time is a central open question in galaxy evolution studies. With the Frontier Field Initiative, HST will provide an ultra-deep view and an unprecedented multi-wavelength dataset to study the galaxy population in and around galaxy clusters at intermediate redshift. With our study, we aim at providing the first self-consistent theoretical framework based on cosmological hydrodynamical simulations to understand the evolution of cluster galaxies: our analysis is designed to complement and aid the interpretation of the wealth of observational data within the LCDM Cosmology. In particular, we plan an in-depth analysis of a sample of 15 haloes with masses between 7x10^13 and 2x10^15 Msun at z=0, simulated with the gravity+hydrodynamics code Arepo. The numerical scheme and the galaxy formation model adopted in this study have already been successfully tested against a series of global measurements: they will allow us to follow the fate, within each cluster, of hundreds of well-resolved galaxies with stellar masses above 5x10^9 Msun. Our analysis will include the assembly properties of the central brightest galaxies as well as the demographics of the satellite populations and their cluster-centric gradients of colors, morphologies and star formation rates. Our setup is suitable to quantify the effects of environment on star formation, stripping, and quenching across an unprecedented range of galaxy masses, cluster masses and spatial scales, in addition to providing valuable clues about the diffuse intra-cluster light.