AR 14584 (Archival Research)

Sat Jul 20 09:47:20 GMT 2024

Principal Investigator: Isaac Shlosman
PI Institution: University of Kentucky
Investigators (xml)

Title: Observational Corollaries of Proto-AGN: Understanding Formation of Supermassive Black Hole Seeds
Cycle: 24

Formation of supermassive black holes (SMBHs) is still an enigma. Recent detections of high-z quasars which harbor massive SMBHs provide a challenge to models of structure buildup in the universe. Main alternatives for the formation of SMBH seeds are (1) remnants of Population III stars, and (2) a direct baryonic collapse within dark matter (DM) halos of ~10^8 Mo --- first halos whose virial temperature exceeds ~10^4 K, and which can lead to the formation of proto-AGN --- luminous pre-SMBH objects. Potentially, this can involve both high-z objects as well as low-z dwarf galaxies in voids. We focus on the direct collapse in 10^8 Mo halos which circumvents the pitfalls of Pop III remnants. The collapse can proceed via a radiation pressure-supported "quasistar" --- with a modified blackbody continuum. Such a configuration requires a very efficient angular momentum transfer. Or, it can form a thick, differentially rotating, self-gravitating disk, which is associated with an X-ray-infrared continuum and Seyfert-level luminosity, anisotropic emission, massive bi-conical outflows, and will be a powerful source of the Ly-alpha emission. We propose to perform radiative transfer in the continuum and hydrogen lines (e.g., Lyman and Balmer), using our models of proto-AGN, and do it "on-the-fly" --- concurrently with the collapse. We shall test the path to quasistellar and disky proto-AGN, produce first synthetic spectra of proto-AGN, and address the issue of feasibility of their detection by the JWST. Finally, we shall develop the strategy of searching for these objects at high- and low-z, based on the specific features in the spectra and associated variability.