Principal Investigator: Frederick Davies
PI Institution: Max Planck Institute for Astronomy
Investigators
(xml)
Title: New Constraints on the Hard Ionizing Photon Budget and the Lifetime and Obscuration of Quasars During the Epoch of Helium Reionization
Cycle: 25
Abstract
The epoch of helium reionization was a major milestone in the history of the Universe, a direct consequence of supermassive black hole growth and the cumulative output of hard ionizing photons by quasars. Our observations of the He II Ly-alpha forest with HST/COS in 26 quasar sightlines show strong fluctuations at z ~ 3, consistent with our state-of-the-art simulations of the He II reionization epoch. However, our detection of transmission at z > 3.5 is inconsistent with all He II reionization models. Resolving this puzzle requires an extensive parameter study of He II reionization, which we propose to carry out using our fast, efficient simulations. The He II Ly-alpha forest is also sensitive to the effect of quasar radiation illuminating the intergalactic medium, known as the proximity effect. We have performed an ambitious ground-based imaging and spectroscopic survey for z ~ 3 quasars in the foreground of HeII sightlines observed with HST/COS, and statistically detected the transverse proximity effect for the first time. The strength of this effect depends on both the quasar lifetime and the opening angle of quasar emission (or the fraction of obscured quasars), and we propose to use our He II reionization simulations to interpret this new measurement. Finally, the line-of-sight proximity effect due to the background quasar provides an independent constraint on the quasar lifetime. Our preliminary comparison of He II spectra to our radiative transfer simulations suggests a quasar lifetime > 10 Myr. We propose to use our He II reionization simulations to model this diverse set of observations and fully capitalize on the far-UV legacy of HST.