Principal Investigator: Laura Watkins
PI Institution: Space Telescope Science Institute - ESA - JWST
Investigators
(xml)
Title: A Unified Picture of Mass Segregation in Globular Clusters
Cycle: 25
Abstract
The sensitivity, stability and longevity of HST have opened up an exciting new parameter space: we now have velocity measurements, in the form of proper motions (PMs), for stars from the tip of the red giant branch to a few magnitudes below the main-sequence turn off for a large sample of globular clusters (GCs). For the very first time, we have the opportunity to measure both kinematic and spatial dependences on stellar mass in GCs.
The formation and evolution histories of GCs are poorly understood, so too are their intermediate-mass black hole populations and binary fractions. However, the current structure and dynamical state of a GC is directly determined by its past history and its components, so by understanding the former we can gain insight into the latter. Quantifying variations in spatial structure for stars of different mass is extremely difficult with photometry alone as datasets are inhomogenous and incomplete. We require kinematic data for stars that span a range of stellar masses, combined with proper dynamical modelling. We now have the data in hand, but still lack the models needed to maximise the scientific potential of our HST datasets.
Here, we propose to extend existing single-mass discrete dynamical-modelling tools to include kinematic and spatial variations with stellar mass, and verify the upgrades using mock data generated from N-body models. We will then apply the models to HST PM data and directly quantify energy equipartition and mass segregation in the GCs. The theoretical phase of the project is vital for the success of the subsequent data analysis, and will serve as a benchmark for future observational campaigns with HST, JWST and beyond.