Maintaining the FGS3 Optical Field Angle Distortion Calibration

B. McArthur, G.F. Benedict and W.H. Jefferys

Astronomy Department, University of Texas, Austin, Texas 78712

E. Nelan

Space Telescope Science Institute, Baltimore, Maryland 21218

Abstract. To date four OFAD (Optical Field Angle Distortion) calibrations have been performed on FGS3 in M35 and analyzed by the Astrometry Science Team. Two have been performed since the last HST (Hubble Space Telescope) Calibration Workshop. The ongoing Long Term Stability Tests have also been analyzed and incorporated into the calibration. A lateral color calibration has been derived from calibration and science data. Descriptions of these tests and the results of our analysis of the resulting data are given. The astrometric science supported by these calibrations is briefly reviewed.

1. Introduction

The largest source of error in reducing star positions from observations with the Hubble Space Telescope (HST) Fine Guidance Sensors (FGSs) is the Optical Field Angle Distortion (OFAD). Description of past analyses can be found in Jefferys et al., (1994), and Whipple et al., (1994, 1996). The precise calibration of the distortion can only be determined with analysis of on-orbit observations. The Long Term STABility tests (LTSTAB), initiated in fall 1992, are an essential component of the OFAD calibration, and provide information on temporal changes. They also provide indicators that a new OFAD calibration is necessary. The lateral color correction has been redetermined with Science Verification data from 1994 and with new analyses of GTO and GO science data. This paper reports the results of the continuing OFAD and LTSTAB tests and the Lateral Color calibration. The astrometric science enabled by the maintenance of these calibrations is briefly reviewed.

2. Motivation and Observations

A nineteen orbit OFAD (Optical Field Angle Distortion) was performed in the spring of 1993 for the initial on-orbit calibration of the OFAD in FGS3. The First Servicing Mission made no changes to the internal optics of the three Fine Guidance Sensors (FGS) that are used for guiding and astrometry on HST. However, the subsequent movement of the secondary mirror of the telescope to the so-called “zero coma” position did change the morphology of the FGS transfer functions (Ftaclas et al. 1993). Therefore, a five orbit post servicing mission delta-OFAD calibration plan was designed and executed. After detection by the LTSTAB of increasing incompatibility with the spring 1994 delta-OFAD calibration, an 11 orbit OFAD was performed in the fall of 1995 to recover the error budget for astrometry. In the spring of 1997 a five orbit OFAD was performed on FGS3 after the second servicing mission. Thirty-five LTSTABS (Long Term Stability Tests) have been performed to assess time-dependent changes. A current list of the OFAD and LTSTAB tests is shown in Table 1.
3. Optical Field Angle Distortion Calibration and Long Term Stability Test

The Optical Telescope Assembly (OTA) of the HST (Hubble Space Telescope) is a Aplanatic Cassegrain telescope of Ritchey-Chrétien design. The aberration of the OTA, along with the optics of the FGS comprise the OFAD. The largest component of the design distortion, which consists of several arcseconds, is an effect that mimics a change in plate scale. The magnitude of non-linear, low frequency distortions is on the order of 0.5 seconds of arc over the FGS field of view. The OFAD is the most significant source of systematic error in position mode astrometry done with the FGS. We have adopted a pre-launch functional form originally developed by Perkin-Elmer (Dente, 1984). It can be described (and modeled to the level of one millisecond of arc) by the two dimensional fifth order polynomial:

\[x' = a_{00} + a_{10}x + a_{01}y + a_{20}x^2 + a_{02}y^2 + a_{11}xy + a_{30}x(x^2 + y^2) + a_{21}(x^2 - y^2) + a_{12}(y^2 - x^2) + a_{03}(y^2 + x^2) + a_{50}(x^2 + y^2)^2 + a_{41}(y^2 + x^2)^2 + a_{32}(x^4 - y^4) + a_{23}(y^4 - x^4) + a_{14}(x^2 - y^2)^2 + a_{05}(y^2 - x^2)^2 \]
arm(

scale-like change was modeled by allowing a variation in the star-selector-A effective lever
due to water desorption in the graphite-epoxy components within the FGS. Initially the
true magnification changes in the HST optical telescope assembly. These changes could be
parameters, and OFAD parameters. The amount of scale change is too large to be due to
from a solution that solved for a constant sets of star positions, star selector encoder (SSE)
indication of this change was seen in the large increase with time in the post-fit residuals
series immediately showed that the scale measured by the FGS was changing with time. The
validity of the current OFAD coefficients and the need for recalibration. The LTSTAB
orientations, spring and fall, every year.

In late fall 1992, just prior to the 1993 OFAD calibration, a series of one orbit long-term
stability tests (LTSTAB) was initiated. These tests had two seasonal orientations, a spring
orientation taken from an orbit of the OFAD, and a fall orientation, which was a 180 degree
flip of the spring orientation. LTSTABs have been performed several times in each of the
orientations, spring and fall, every year.

The LTSTAB is sensitive to scale and low order distortion changes. It is an indicator of
the validity of the current OFAD coefficients and the need for recalibration. The LTSTAB
series immediately showed that the scale measured by the FGS was changing with time. The
indication of this change was seen in the large increase with time in the post-fit residuals
from a solution that solved for a constant sets of star positions, star selector encoder (SSE)
parameters, and OFAD parameters. The amount of scale change is too large to be due to
ture magnification changes in the HST optical telescope assembly. These changes could be
due to water desorption in the graphite-epoxy components within the FGS. Initially the scale
-like change was modeled by allowing a variation in the star-selector-A effective lever
arm(ρ_A). Since 1995, the change has been modeled by allowing a change in both ρ_A
and κ_A(the offset angle of the star selector).

A five orbit delta-OFAD was performed on 27 April 1994 after the first servicing mission
to assess the distortion changes caused by the secondary mirror movement to the zero coma
position. Significant effects in the OFAD (in addition to the scale-like changes) at the level
of 10 mas were found. The LTSTAB tests have revealed continued permutations in the FGS.
In addition to the scale changes, in mid-1995 we began to recognize higher order distortion
changes. These changes manifested themselves as something that looks like a radial scale
variation and is fairly well modeled by alterations in the third order terms in Eq. (1). We
had also noted that the residuals from the fall orientation LTSTABS are consistently higher
than for the spring.

An eleven orbit delta-OFAD was performed in the late fall of 1995, to analyze temporal
changes, and upgrade the y-axis coverage. Initially puzzling poor results were the result
doctoration of the S-curve in the negative X region of the pickle, causing locks on the
wrong zero-crossings. These incorrect locks produced an island of large negative residuals

\begin{align}
 y' &= b_{00} + b_{10}x + b_{01}y + b_{20}x^2 + b_{02}y^2 + b_{11}xy + b_{30}x(x^2 + y^2) + b_{21}x(x^2 - y^2) \\
 &+ b_{12}y((y^2 - x^2) + b_{03}y(x^2 + y^2) + b_{50}x(x^2 + y^2)^2 + b_{41}y(y^2 + x^2)^2 \\
 &+ b_{32}x((x^4 - y^4) + b_{23}y(y^4 - x^4) + b_{14}x(x^2 - y^2)^2 + b_{05}y(y^2 - x^2)^2
\end{align}

(1)

where x, y are the observed position within the FGS field of view, x’, y’ are the corrected
position, and the numerical values of the coefficients a_{ij} and b_{ij} are determined by calibration.

M35 was chosen as the calibration field. Since the ground-based positions of our target
calibration stars were known only to 23 milliseconds of arc, the positions of the stars were
estimated simultaneously with the distortion parameters. This was accomplished during
a nineteen orbit calibration, executed on 10 January 1993 in FGS number 3. GaussFit (Jefferys, 1988), a least squares and robust estimation package, was used to simultaneously
estimate the relative star positions, the pointing and roll of the telescope during each orbit
(by quaternions), the magnification of the telescope, the OFAD polynomial coefficients,
and these parameters that describe the star selector optics inside the FGS: ρ_A and ρ_B (the
arm lengths of the star selectors A and B), and κ_A and κ_B (the offset angles of the star
selectors). Because of the linear relationship between ρ_A, ρ_B, κ_A and κ_B, the value of κ_B
is constrained to be zero. A complete description of that calibration, the analysis of the
data, and the results are given in Jefferys et al. (1994).
in the negative X region of the pickle (Figure 1). With the removal of these observations, the delta-OFAD was successfully completed.

Figure 1. Large residuals in negative X pickle region indicate deterioration of S-curves in that area.

Further analysis suggested redetermining the star catalog, which was done with input from the three OFAD experiments of 1993, 1994 and 1995. This was done to minimize the OFAD distortion that could have been absorbed by the catalog positions.

In the spring of 1997 a Second Servicing Mission replaced FGS1. A five orbit delta-OFAD was performed in FGS3, repeating the orientation of spring 1994. Two LTSTABS were performed in Spring 1997, one before and one after the second servicing mission. With scale and offset removed, a comparison yielded an rms of 0.965 mas, indicating stability of FGS3 across the servicing mission.

Figure 2. Four frequency Fourier series correction of systematic signature in X Residuals

A systematic signature in the X residuals from the four OFAD analysis remains. This appears as a very distinctive curve in the x component residuals as a function of position angle in the FGS field of view (Figure 2). The curve cannot be modeled by the fifth order polynomial. We have used a four frequency Fourier series to remove this effect. The size of this effect, in an RMS sense over the entire field of view of the FGS, is about one millisecond of arc. However, the peak-to-peak values near the center of the field of view can be as large
as 8 mas. The source of this unexpected distortion is not yet known but it may be due to the way the FGS responds to the spherically aberrated HST beam.

A small signature in the Y residuals of the \(\rho_A \kappa_A \) fit of the LTSTAB to the OFAD coefficients has also been found. It appears as a quadratic. This signature is not found in the OFAD residuals. Currently it is not removed from the data.

On the basis of almost five years of monitoring the distortions in FGS 3 we have concluded that at the level of a few milliseconds of arc, the optical field angle distortion in HST FGS 3 changes with time. These changes can be monitored and modeled by continuing the LTSTAB tests, which also alerts us to the need for a new OFAD calibration. There remains some dichotomy between the OFAD calibration data taken in the spring and that taken in the fall.

Four sets of OFAD coefficients (Eq. 1) and star selector parameters \((M, \rho_A, \rho_B, \kappa_A \text{ and } \kappa_B) \) have been derived for reductions of astrometry observations. The average plate residuals for these determinations are listed in Table 2. Comparisons of grids created with each set of OFAD coefficients and distortion parameters indicate that the OFAD has changed around 10 milliseconds of arc in non-scalar distortion between calibrations (which have spanned 12–18 months). These changes in the OFAD with x and y scale and offset (a 6 parameter plate fit) removed can be seen in Figures 3, 4 and 5.

<table>
<thead>
<tr>
<th>OFAD</th>
<th>Xrms</th>
<th>Yrms</th>
<th>RSS</th>
<th>Number of Residuals</th>
<th>Orbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 1993</td>
<td>0.0020</td>
<td>0.0024</td>
<td>0.0027</td>
<td>548</td>
<td>19</td>
</tr>
<tr>
<td>Spring 1994</td>
<td>0.0020</td>
<td>0.0020</td>
<td>0.0024</td>
<td>144</td>
<td>5</td>
</tr>
<tr>
<td>Fall 1995</td>
<td>0.0019</td>
<td>0.0022</td>
<td>0.0026</td>
<td>354</td>
<td>11</td>
</tr>
<tr>
<td>Spring 1997</td>
<td>0.0025</td>
<td>0.0026</td>
<td>0.0029</td>
<td>121</td>
<td>5</td>
</tr>
</tbody>
</table>

Each LTSTAB is associated with a specific set of coefficients Table 1. In the boundary area between two OFAD experiments, the LTSTAB observations are reduced with both sets of OFAD separately to determine which coefficients produce the best \(\rho_A \kappa_A \) fit of the LTSTAB.

The values of \(\rho_A \) and \(\kappa_A \) determined by the LTSTABS and OFADS are illustrated in Figure 6 and Figure 7. The error bars for these determination are smaller than the symbols. The rms errors of these determinations are shown in Figure 8. \(\rho_A \) and \(\kappa_A \) initially appeared to be smooth exponential changes over time. Since the fall of 1995, \(\rho_A \), the scale-like sse parameter has been less predictable. Therefore, for reduction of science astrometry data, the \(\rho_A \kappa_A \) parameters are determined by interpolation of the two nearest LTSTABs in time. The 1997 Spring OFAD shows a dramatic drop in \(\rho_A \), evidence of a significant scale change occurring. Interestingly, the Spring 1997 OFAD shows approximately the same value of \(\rho_A \) as the Spring 1994 OFAD. These two OFAD observation proposals were almost identical.
Figure 3. OFAD change between Spring 1993 and Spring 1994. The rss of the change is 10.6 milliseconds of arc.

Figure 4. OFAD change between Spring 1994 and Fall 1995. The rss of the change is 17.5 milliseconds of arc.

Figure 5. OFAD change between Fall 1995 and Spring 1997. The rss of the change is 9.3 milliseconds of arc.
Figure 6. κ_A fit of the LTSTABS

Figure 7. ρ_A fit of the LTSTABS

Figure 8. RSS of $\rho_A \kappa_A$ fit of LTSTABS
4. Lateral Color

Since each FGS contains refractive elements (Bradley et al. 1991), it is possible that the position measured for a star could depend on its intrinsic color. Changes in position would depend on star color, but the direction of shift is expected to be constant, relative to the FGS axes. This lateral color shift would be unimportant, as long as target and reference stars have similar color. However, this is not always the case (e.g., Proxima Centauri, Benedict et al. 1993), hence our interest. Pre-launch ground testing indicated for FGS 3 a lateral color effect predominantly in the x direction, with magnitude a few milliseconds of arc per unit change in B−V color index. The effect is modeled (for example in X)

\[X' = X + ctx \times (B - V) \] (2)

We have recently completed the lateral color calibration. This two-pronged attack consisted of a reanalysis of the Science Verification Lateral Color Test data (acquired in late 1994) and an analysis of the Proxima Cen reference frame (a mix of SV, GTO and GO data acquired 1992-1997). The SV Lateral Color field was chosen to have a very wide range of stellar colors (\(\Delta B - V \sim 2 \)). The Proxima Cen reference frame makes up in sheer volume of data (68 data sets) what it lacks in color range (\(\Delta B - V \sim 1 \)). Neither approach is ideal, since the original SV test was exceedingly sparse. From the 1994 SV test we obtain \(ctx = -0.0009 \pm 0.0002 \) and \(cty = -0.0002 \pm 0.0003 \). The Proxima Cen data yield \(ctx = -0.0010 \pm 0.0005 \) and \(cty = +0.0003 \pm 0.0004 \). We adopt as the Lateral Color calibration a weighted average of the two results: \(ctx = -0.0009 \pm 0.0002 \) and \(cty = -0.0000 \pm 0.0002 \)

5. Ongoing Astrometric Science with FGS 3

FGS 3 is being used to obtain many series of data from which trigonometric parallaxes will be derived. Targets include distance scale calibrators (δCep, RR Lyr), interacting binaries (Feige 24), a central star of a planetary nebula (NGC 6853), an old Nova (RW Tri), and several dwarf novae (e.g., SS Cyg). It is also involved in an intensive effort to obtain masses and mass ratios for a number of very low-mass M stars (for example, GJ 22, GJ 791.2, GJ 623, and GJ 748). We have completed parallax determinations for Proxima Cen and Barnard’s Star and obtained 0.5 mas precisions (Benedict et al. 1997). For most of the targets mentioned above we will have far fewer sets of observations. Our recent analyses of Hyades parallax data sets, containing a similarly small number of epochs (van Altena et al. 1997), suggest that we will obtain parallax precisions of 1 mas for most of these targets. A continued program of LTSTAB monitoring and OFAD updates is essential to the success of these ongoing, long-term investigations.

6. Conclusions

We have shown that continued OFAD calibration of the Fine Guidance Sensors can reduce this source of systematic error in positions measured by the FGSs to the level of 2 mas. However, changes in the FGS units continue to occur, even seven years after launch. These changes require periodic updates to the OFAD to maintain this critical calibration. The OFAD calibration is an ongoing process, every new observation set is used to not only expand the timeline, but re-evaluate the previous calibrations. A lateral color calibration in FGS 3 has been determined using Science Verification and GTO data.

Acknowledgments. The Astrometry Science Team is supported by NASA NAG5-1603. We are grateful to Q. Wang for the initial modeling of the OFAD and D. Story and A.L. Whipple for their earlier contributions to this calibration. We thank L. Reed for
her long-term contribution to our knowledge of FGS3. We thank Gary Welter and Keith Kalinowski for their interest and assistance at Goddard Space Flight Center. We thank all the members of the STAT, past and present for their support and useful discussions. We thank Melody Brayton for assistance in the preparation of this manuscript.

References

