HST Two-Gyro Mode

Ken Sembach
26-October-2005

Two-Gyro Science Mode Website
http://www.stsci.edu/hst/hst_overview/TwoGyroMode
(includes links to ISRs)
STScI Two-Gyro Mode Team Effort

David Adler Harry Ferguson Jennifer Mack Susan Rose
Santiago Arribas Leslie Foor Sangeeta Malhotra Kailash Sahu
Louis Bergeron Mary Galloway Jinger Mo Al Schultz
Carl Biagetti Mauro Giavalisco Carey Myers Ken Sembach
Michael Bielefeld Ron Gilliland Ed Nelan Marco Sirianni
John Biretta Mark Giuliano Keith Noll Galina Soutchkova
John Boia Steve Handy Alan Patterson Scott Stallcup
Gary Bower William Hathaway Marc Postman Denise Taylor
Mike Boyer Inge Heyer Cheryl Pavlovsky James Taylor
Stefano Casertano Bill Januszewski Chien Peng Kelli Underwood
Don Chance Danny Jones Karla Peterson Alison Vick
George Chapman Ian Jordan Beth Perriello Alan Welty
Kerry Clark Anton Koekemoer Rick Perrine Brad Whitmore
Colin Cox Vera Kozhurina-Platais Lee Quick Tommy Wiklind
Ilana Dashevsky John Kucel Merle Reinhart William Workman
Roelof de Jong John Lecourt Adam Riess Chun Xu
Rob Douglas Andy Lubenow Christine Ritchie Jim Younger
Ron Downes Ray Lucas Tony Roman
Rodger Doxsey Jack MacConnell Tricia Royle

ACS analysis team NICMOS analysis team Schedulers
Two-Gyro Mode

• HST uses gas bearing rate-sensing gyros to provide information about changes in observatory pointing.
 - Gyros do not change the pointing. Reaction wheels provide the torques needed to change the pointing.

• The HST attitude control system was originally designed to operate with 3 gyros.
 - 4 of 6 gyros presently installed in HST are functional

• To conserve gyro lifetime and extend the life of the HST mission, HST was preemptively placed in two-gyro mode on 8/28/05.
 - Gyro #4 was turned off 09/01/05
 - Gyro #6 was already off
 - Gyros #1 and #2 are currently on
 - The FGS provide the missing (orthogonal) axis of control during science observations.
Two-Gyro Operations - Key Points

- Science data appear nominal and reveal no significant anomalies.
- HST instrument performance in two-gyro mode is essentially indistinguishable from performance in three-gyro mode.
 - Observations requiring the finest pointing control (coronagraphy and high-resolution imaging) are feasible.
 - Moving targets have been observed (Mars, Uranus).
- Fine-pointing jitter is typically ≤ 5 milli-arcseconds (RMS over 60 sec interval).
- Scheduling is more restrictive in two-gyro mode because entry into fine pointing mode for science observations is more complicated.
 - Only about 50% of sky available at any given time
- Not allowed
 - Gyro-only tracking
 - Guide star handoffs
 - Single guide star acquisitions
Jitter in Two-Gyro Mode

- Pointing jitter derived from inputs into the two-gyro attitude control law is comparable to the jitter in three-gyro mode.
- This amount of jitter is hard to detect in the science data.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Gyro Set</th>
<th>Over All Exposures</th>
<th>RMS Jitter (milli-arcseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-sec Avg.</td>
</tr>
<tr>
<td>Two-Gyro (Feb. 2005)</td>
<td>2-4</td>
<td>Mean / Max (454 exp.)</td>
<td>5.6 / 9.5</td>
</tr>
<tr>
<td>Two-Gyro (Aug. 2005)</td>
<td>1-2</td>
<td>Mean / Max (262 exp.)</td>
<td>3.3 / 5.3</td>
</tr>
<tr>
<td>Three-Gyro</td>
<td>1-2-4</td>
<td>Mean (24 exp.)</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Data provided by B. Clapp (LMCO)
Two-Gyro Scheduling

- Scheduling efficiency in two-gyro mode is slightly lower than in three-gyro mode (~72 vs. ~80 prime orbits/week).
- For unconstrained observations, any point in the sky is available at some time during the year.
- For constrained observations, placing limits on roll angle or time of observation restricts availability.
- Consult the two-gyro website for detailed scheduling graphs and tables.
Two-Gyro Science Mode Orbital Verification (TGSMOV)

- On-orbit tests during the transition to two-gyro mode verified ACS and NICMOS instrument performance.
 - ACS: #10458-10461
 - NICMOS: #10462,10464
- Tests for
 - PSF width
 - Pointing stability
 - Coronagraphy
 - Moving target tracking

A 10-second ACS/HRC/F555W observation of the globular cluster NGC 2298 taken in two-gyro mode.
ACS PSF Analysis

- Multiple exposures of three rich star clusters with HRC F555W
 - Sequences of 10, 100, 500 sec exposures
 - Slight dependence of PSF width of exposure duration
- FWHM measurements for stars with S/N > 10.
 - Hundreds of stars per image
- Bright and faint guide stars to check results
 - $V = 13$ and $V = 14$
 - No dependence of PSF width on GS magnitude seen
ACS Instrument Performance in Two-Gyro Mode is Excellent

August 2005

114 exposures
3 clusters
- NGC 2298
- NGC 1891
- NGC 6752

October 2005

72 exposures
1 cluster (CVZ)
- NGC 6752

Three-gyro historical data
Avg (FWHM) = 2.04±0.03

PSF analyses by M. Sirianni, C. Pavlovsky, R. Lucas

186 HRC exposures
Min (FWHM) = 1.89
Avg (FWHM) = 2.00
Max (FWHM) = 2.19
NGC 6752 Two-Gyro Observations

August 2005
18 exposures
Non-CVZ time
Sun Angle ~ 115°

October 2005
72 exposures
CVZ time
Sun Angle ~ 80°

Sun Angle for the two other clusters was ~70° and ~89°.

NGC 6752 (October)
Min = 1.89
Avg = 1.97
Max = 2.06

NGC 6752 (August)
Min = 2.04
Avg = 2.09
Max = 2.19
PSF Dependence on T_{exp}

Longer exposures have slightly broader PSFs.

The longer exposures were taken later in each orbit.
PSF Dependence on Time in Orbit

- PSFs get broader with time in individual orbits.
- PSF variation is larger than expected simply from exposure time differences.
- Dependence is likely due to normal changes of focus caused breathing cycle of the telescope during the orbit.

Analysis by Matt Lallo.
ACS - Pointing Stability Test
ACS - Pointing Stability Test

Pointing stability in two-gyro mode is indistinguishable from stability in three-gyro mode.

<table>
<thead>
<tr>
<th></th>
<th>Total Shift (RMS, milli-arcsec)</th>
<th>Roll Angle r.m.s. (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Gyro (Feb ‘05)</td>
<td>2.29</td>
<td>0.00097</td>
</tr>
<tr>
<td>2-Gyro (Aug ‘05)</td>
<td>2.08</td>
<td>0.00070</td>
</tr>
<tr>
<td>3-Gyro</td>
<td>2.19</td>
<td>0.00093</td>
</tr>
</tbody>
</table>
Two-Gyro Moving Target Test

- 32 x 0.3 sec F435W HRC images of Mars over 1 orbit.
 - Median ~ 10000 e-/pixel
 - Up to 30000 e- in icecap
- Rotation of Mars complicates cross correlation of images to find shifts
- Made mask (> 5000 e- =1 < 5000 e- =0) and cross correlated masks with drizzle tools to find shifts.
Mars Position Measurements

- Compared measured shifts of Mars image to expected shifts from the difference between predicted and final HST ephemeris.
- Direction and scale of shifts agree, but small differences of ~16 mas remain.
- Residuals are smaller than the unavoidable errors from in-track HST positional uncertainties.

Analysis by C. Proffitt
ACS Coronagraphy

- Coronagraph spot jumps unpredictably by up to 3 HRC pixels between visits.
 - Variation of spot position is more significant than two-gyro pointing uncertainties.
 - Earth flats taken weekly to measure position offset.
 - Offset chosen for subsequent observations to minimize position error.
- Coronagraphic test compared coronagraph images through four filters.
 - Three-gyro mode, September 2002
 - Two-gyro mode test, February 2005
 - Two-gyro mode, August 2005
- No significant differences found between two-gyro and three-gyro modes.
ACS Coronagraphic Images

HD 130948A
F625W
Three-gyro image
September 2002
Exposure 30 sec

HD 130948A
F625W
Two-gyro image
February 2005
Exposure 300 sec

HD 216149
F625W
Two-gyro image
August 2005
Exposure 300 sec

KRS 18
ACS Coronagraphic Image
Radial Profiles

Solid Line: Three-gyro
Dotted line: February Two-gyro
Dashed line: August Two-gyro

Analysis by C. Cox
NICMOS Coronagraphy

Observations of HD 17925, (G star, V=6.0)

Direct images

Acquisition successful, repeatable

Coronagraphic images

See NICMOS ISR 2005-001 (Schultz et al.) for analysis of similar observations in February 2005.