WFIRST and Giant Segmented Mirror Telescopes (GSMTs)

Mark Dickinson (NOAO) + Michael Bolte (UCSC)
Giant Segmented Mirror Telescopes

• GSMTs (aperture >20m; aka “ELTs”) offer:
 • Greater collecting area & sensitivity than today’s 8-10m telescopes
 • Better angular resolution with diffraction-limited AO performance in the infrared
 • $\theta \approx 15$ mas (D/30m) @ 2μm
 • D^4 sensitivity gains for point sources (or greater in crowded fields, or for high-contrast imaging)
 • Powerful tools for nearly all areas of astronomical research, from the solar system to cosmology
HST or WFIRST
WFIRST and GSMTs

• WFIRST will:
 • Survey large sky areas and discover exceptionally interesting objects
 • Map stellar populations in nearby galaxies in detail
 • Obtain coronagraphic imaging & low-resolution spectra for exoplanets

• GSMTs will provide NIR diffraction-limited angular resolution
 \(\frac{\lambda}{D} = 12.5x \text{ smaller than WFIRST} \)
 • Inner working angle for exoplanet imaging
 • Morphology from the Solar System to the Epoch of Reionization
 • Crowded field imaging and spectroscopy

• GSMTs offer huge primary collecting area
 • Faint-object spectroscopy
 • High-resolution spectroscopy
 • Fast time-resolved observations
Bigger = Sharper (images)

\[\theta \approx \frac{\lambda}{D} \]
Bigger = Fainter (objects)

NB: JWST gains a tremendous advantage at $\lambda > 2.5\mu$m from dark space background
Three GSMT projects

• Giant Magellan Telescope (GMT)
 • 7 x 8.4m mirrors → 24.5m effective diameter; unvignetted FOV ~20 arcmin
 • Las Campanas, Chile
 • International consortium including 7 US institutional & university partners

• Thirty Meter Telescope (TMT)
 • 30m primary, 492 hexagonal segments; unvignetted FOV ~15 arcmin
 • Maunakea, HI, or La Palma, Canary Islands
 • Caltech, Canada, China, India, Japan, & University of California, with AURA as an Associate Member

• European Extremely Large Telescope (E-ELT)
 • 39m primary, 798 hexagonal segments; unvignetted FOV ~10 arcmin
 • Cerro Armazones, Chile
 • European Southern Observatory (ESO)
GSMT instrumentation “Equivalence Table”

courtesy Luc Simard

<table>
<thead>
<tr>
<th>Type of Instrument</th>
<th>GMT</th>
<th>TMT</th>
<th>E-ELT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-IR, AO-assisted Imager + IFU</td>
<td>GMTIFS</td>
<td>IRIS</td>
<td>HARMONI</td>
</tr>
<tr>
<td>Wide-Field, Optical Multi-Object Spectrometer</td>
<td>GMACS</td>
<td>WFOS</td>
<td>MOSAIC- HMM</td>
</tr>
<tr>
<td>Near-IR Multislit Spectrometer</td>
<td>NIRMOS</td>
<td>IRMS</td>
<td>MOSAIC- HMM</td>
</tr>
<tr>
<td>Deployable, Multi-IFU Imaging Spectrometer</td>
<td>IRMOS</td>
<td>MOSAIC- HDM</td>
<td></td>
</tr>
<tr>
<td>Mid-IR, AO-assisted Echelle Spectrometer</td>
<td>MIRES</td>
<td>METIS</td>
<td></td>
</tr>
<tr>
<td>High-Contrast Exoplanet Imager</td>
<td>TIGER</td>
<td>PFI</td>
<td>EPICS</td>
</tr>
<tr>
<td>Near-IR, AO-assisted Echelle Spectrometer</td>
<td>GMTNIRS</td>
<td>NIRE S</td>
<td>SIMPLE</td>
</tr>
<tr>
<td>High-Resolution Optical Spectrometer</td>
<td>G-CLEF</td>
<td>HROS</td>
<td>HIRES</td>
</tr>
<tr>
<td>“Wide”-Field AO-assisted Imager</td>
<td>WIRC</td>
<td>MICADO</td>
<td></td>
</tr>
</tbody>
</table>

Early-light instruments underlined / highlighted
Science synergies

• Solar System
 • Outer solar system bodies

• Exoplanets
 • High-contrast imaging
 • Spectroscopy of exo-atmospheres

• Milky Way & nearby galaxies
 • Imaging and spectroscopy for resolved stellar populations

• Early universe and galaxy formation
 • Spectroscopy of exciting objects
 • High angular resolution imaging and spectroscopy
 • IGM / CGM tomography

• Fundamental physics & cosmology
 • Redshift measurement and photo-z calibration
 • Strong lensing / monitoring
Our Solar System

GSMTs will observe and monitor solar system bodies at spacecraft-like resolution

Keck AO H-band

TMT IRIS H-band 12 km resolution @ Io

Io Simulation

Io Simulation T. Do/UCLA/IRIS/TMT

27 June 2017 Community Science with WFIRST - Mark Dickinson
Our Solar System

TMT IRIS samples Pluto+Charon at 80 km/pixel resolution
Trans-Neptunian Objects

- WFIRST will discover thousands of outer solar system bodies
- GSMTs will:
 - Resolve the largest objects (~200 km @ 30 AU)
 - Discover binaries and measure their orbits
 - Spectroscopy: surface chemistry, cryo-volcanism, volatiles

Sheppard+2012

Delsanti+2010

Cruikshank+1998; Barucci+2006
Extrasolar Planets

GSMTs will take images and spectra to measure the physical properties of exoplanets, their atmospheres, and protoplanetary disks.

Distance = 140 pc

0.1 arcsec = WFIRST λ / D @ 1.15 μm
Imaging extrasolar planets

GSMT high contrast observations will allow exoplanet detection at smaller inner working angles (0”.01-0”.1) where reflected light is brighter.

WFIRST CGI should achieve higher contrast at larger separations (>0.1”)
Characterizing Exoplanet atmospheres

GSMTs enable high contrast, high resolution, high-SNR spectroscopy of transiting/eclipsing exoplanets with required short exposure times.
Nearby galaxies: M31 nucleus

GSMTs enable deep imaging and spectroscopy for crowded stellar fields in nearby galaxies – stellar populations and dynamics around the central supermassive black hole.
Virgo cluster

GSMTs will measure resolved stellar populations with deep sensitivity out to the Virgo cluster and beyond

Keck AO: Brightest AGB stars

TMT IRIS: Well into the RGB
The Early Universe

GSMTs will dissect the formation and evolution of galaxies high angular resolution imaging and spectroscopy at high spectral resolution and SNR.
< 200 pc at any redshift, and ~10 pc or better with Gravitational Lensing
The Early Universe

GSMTs will dissect the formation and evolution of galaxies high angular resolution imaging and spectroscopy at high spectral resolution and SNR. < 200 pc at any redshift, and ~10 pc or better with Gravitational Lensing
The Early Universe

GSMTs will dissect the formation and evolution of galaxies high angular resolution imaging and spectroscopy at high spectral resolution and SNR. < 200 pc at any redshift, and ~10 pc or better with Gravitational Lensing.
IGM Tomography

- TMT/WFOS spectroscopy down to $R = 24.5$ with spectral resolution 5000 and S/N>30

- Background galaxies (vs. QSOs) provide $>100x$ higher sightline density to study IGM/CGM studies

- Strongly complementary to WFIRST galaxy surveys and large scale structure studies
Photometric redshift calibration

WFIRST weak lensing and LSS cosmology probes depend on accurate and unbiased photometric redshifts.

GSMT multi-object spectroscopy will measure accurate redshifts in parts of magnitude / redshift / galaxy type parameter space that smaller telescopes cannot reach.

Masters et al. 2015
Low-Mass CDM with Astrometric Anomalies in Gravitational Lenses

• Direct detection of very high M/L structures via strong lensing. Current limits are a few times 10^8 solar masses. GSMTs sensitive to 10^7.

• Also, flux ratio anomalies in multiply imaged AGN nuclei.

• Current limits set by angular resolution, sensitivity, and number of sources.

• WFIRST will find 1000s to study.

Vegetti, Czoske & Koopmans 2009
E-ELT, GMT, TMT

International partners:
Australia, Austria, Belgium, Brazil, Canada, Chile, China, Czech Republic, Denmark, Finland, France, Germany, India, Italy, Japan, Korea, Netherlands, Poland, Portugal, Spain, Sweden, Switzerland, United Kingdom

US universities & institutions:
Caltech, Carnegie, Harvard, SAO, University of Arizona, University of California, University of Chicago, University of Texas at Austin, Texas A&M

What’s missing from this picture?
US national role in GSMTs

• 2000 and 2010 Decadal Surveys identified US national participation in GSMTs as an important priority for US ground-based OIR astronomy
 • Reaffirmed in 2015 NRC report on the US Ground-based OIR System

• 2013: NSF established a cooperative agreement (C.A.) with TMT to develop a model for potential US national partnership
 • AURA participates in TMT governance (Board, SAC, etc.); NOAO executes AURA’s responsibilities through a US TMT Liaison Office
 • NB: There is no NSF commitment to join or fund TMT beyond the C.A.

• GMT has community representatives on its SAC and engages with the broader community via workshops, etc.
TMT Status
TMT Telescope Structure
by Mitsubishi Electric Company (MELCO)
TMT Telescope Structure
Main Structural Node
Primary Mirror (M1) Segment Blank Production

- Ohara has produced 213 primary mirror segment blanks so far
- 154 generated to meniscus shape
Segment Polishing at Coherent

Preparations underway for segment polishing in India and China

Polishing the stressed segment with a spherical tool

Stressing Fixture
Primary Mirror Control System
JPL, TMT-India

- Jet Propulsion Laboratory is responsible for the system design
- India is responsible for production of actuators, sensors, electronic

Actuator components
Edge sensors
M3 System at CIOMP, Changchun

1/4 scale functional prototype passed Test Results Review
Where will TMT be Built?
Maunakea remains the preferred site and all efforts are being made to regain access.
TMT Hawaii status

- December 2015: Hawaii Supreme Court vacated the TMT conservation district use permit on procedural grounds.
- Evidentiary hearings for a second Contested Case ended in March; hearing officer should make a recommendation soon.
- Hawaii Land Board will make a decision on new permit, which likely will be challenged to the Hawaii Supreme Court.
TMT Alternative Site

• In February 2016 the TMT project started a process to identify and select an alternative site option.
• “Plan B” site is Observatorio del Roque de Los Muchachos (ORM) on La Palma operated by Instituto de Astrofisica de Canarias (IAC)
• Northern Hemisphere access to complement E-ELT and GMT
• Significant infrastructure already in place for a quick start if required
• Site-specific modifications to facility design underway
• Permitting processes underway
• Hosting Agreement MoU is in place to be executed if necessary

➢ TIO Board has set a firm goal that on-site construction should begin at one of the sites in April 2018
TMT Alternate Site Investigations
Observatorio del Roque de los Muchachos
ORM on La Palma

• Similar C_n^2 profile and τ_0 values as those at Maunakea (relevant to AO correction)
• Similar fraction of clear nights as Maunakea
• Lower elevation (2400m vs 3960m)
 • Higher atmospheric pressure and precipitable water vapor (PWV)
 • Higher mean temperature
• Higher declination (28.9° vs 19.8°)

Observations at thermal IR wavelengths are compromised because of the lower altitude and higher temperature
Southern sky visibility is reduced (e.g., WFIRST HLS)
US TMT Science Working Group (SWG)

- The US TMT SWG engages with the US astronomical community to understand and represent its interests and aspirations for TMT

<table>
<thead>
<tr>
<th>Ian Dell’Antonio* (Brown)</th>
<th>Lucas Macri (TAMU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Dickinson* (NOAO, chair)</td>
<td>Karen Meech* (Hawaii/IfA)</td>
</tr>
<tr>
<td>Anthony Gonzalez (Florida)</td>
<td>Susan Neff (NASA-GSFC)</td>
</tr>
<tr>
<td>Stephen Kane (SFSU)</td>
<td>Deborah Padgett (NASA-JPL)</td>
</tr>
<tr>
<td>Jamie Lloyd (Cornell)</td>
<td>Caty Pilachowski* (Indiana)</td>
</tr>
<tr>
<td>Jennifer Lotz (STScI)</td>
<td>Kartik Sheth (NASA-HQ)</td>
</tr>
<tr>
<td></td>
<td>Lisa Storrie-Lombardi (IPAC)</td>
</tr>
</tbody>
</table>

* TMT Science Advisory Committee or Board representative

- SWG has helped to develop a *US National TMT Participation Plan* for the NSF
TMT International Science Development Teams (ISDTs)

- Engage future science user community in TMT now
- Plan TMT science programs
- Provide scientific input & guidance to the TMT project
- Help define observatory capabilities & operations model
- Foster collaboration & cooperation between scientists in and beyond the international TMT partnership

<table>
<thead>
<tr>
<th>Fundamental Physics & Cosmology</th>
<th>Formation of Stars & Planets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Universe, Galaxy Evolution, and the IGM</td>
<td>Exoplanets</td>
</tr>
<tr>
<td>Milky Way and Nearby Galaxies</td>
<td>Our Solar System</td>
</tr>
<tr>
<td>Supermassive Black Holes</td>
<td>Time Domain Science</td>
</tr>
<tr>
<td>Stars, stellar physics, and the ISM</td>
<td></td>
</tr>
</tbody>
</table>

- Open to all PhD astronomers
 - 229 scientists worldwide, **70 from the US-at-large community**

27 June 2017 Community Science with WFIRST - Mark Dickinson
The TMT Science Forum

- Annual science conference & collaboration meeting
- Planning the future of TMT science and instrumentation
- NSF-TMT cooperative agreement provides travel support for US astronomers
Coming soon!

7-9 November 2017
Mysore, India

Theme: Planning next-generation TMT instrumentation

https://conference.ipac.caltech.edu/tmtsf2017/
US National TMT Participation Plan

• Three main documents:
 • Report of the US TMT Science Working Group (SWG)
 • Science case for US national TMT participation
 • Flow-down from science to capabilities & operations
 ➢ Maximizing TMT’s benefits for the US national community
 • Business and governance model for US national TMT participation
 • Workforce, education, public outreach & communication plan
• Drafts of all reports were submitted to NSF-AST in May 2016
 • Review is on hold until the TMT site situation is clarified
Benefits of US National Membership in TMT

- Consistent, long-term open access to TMT observing time
 - US astronomers may create & lead observing programs, not just participate via collaboration
 - Critical for US scientific competitiveness in the worldwide GSMT era
 - Synergies with other major US national astronomical investments (ALMA, JWST, LSST, WFIRST, TESS, etc.)
- Full participation in TIO governance and scientific planning
 - Definition & prioritization of instrumentation and AO systems
 - Evolution of operations model, observing modes, data management
- Access to archived TMT data
- Opportunity to participate in international TMT key projects
- Enhanced opportunity to participate in developing TMT instrumentation
SWG recommendations to NSF

• ≥ 20% TMT participation share (60 nights/year), with a minimum of 10%
 • Membership ensures the US scientific community has a governance role in planning the observatory’s future

• Implement cross-partnership TMT large / key projects
 • Enable large science programs that would be difficult for any one TMT partner
 • Open more TMT observing time and science to US participation
 • Generate large, coherent data sets with high archival re-use value

• Ensure use and re-use of TMT data through archives and good data management practices

• A mix of classical and condition-adaptive queue scheduling
Summary

• The high angular resolution and sensitivity of GSMTs offer powerful synergy with WFIRST for science from the Solar System to Cosmology

• US national participation in GSMTs would provide open access to these capabilities for any astronomer with a good idea

• The NSF-TMT cooperative agreement has defined a model for US national participation in TMT
 • Forward motion currently stymied by the TMT site situation
 • Many conclusions/recommendations of the US TMT SWG could apply similarly to GMT (or even to E-ELT? e.g., via time exchange)
Backup / extra slides:
GSMT instrumentation & timelines
GMT first-generation instruments

Table by Rebecca Bernstein (courtesy George Jacoby)

<table>
<thead>
<tr>
<th>Instrument / Optical mode*</th>
<th>Description</th>
<th>λ Range (µm)</th>
<th>Resolution (λ/Δλ)</th>
<th>Field of View</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-CLEF / NS, GLAO</td>
<td>Optical: High-resolution spectrograph</td>
<td>0.35 – 0.95</td>
<td>20,000 – 100,000</td>
<td>7x0.7,1.2” fibers</td>
</tr>
<tr>
<td>GMACS / NS, GLAO</td>
<td>Optical: Wide-field multi-obj spectrograph</td>
<td>0.35 – 1.0</td>
<td>1,500 – 4,000 (10k w/ MANIFEST)</td>
<td>40 – 60 amin²</td>
</tr>
<tr>
<td>GMTIFS / LTAO,NGAO</td>
<td>NIR: AO-fed IFU spectrograph/imager</td>
<td>0.9 – 2.5</td>
<td>5,000 & 10,000</td>
<td>10 to 400 asec²</td>
</tr>
<tr>
<td>GMTNIRS / NGAO,LTAO</td>
<td>IR: AO-fed High-res spectrograph</td>
<td>1.2 – 5.0</td>
<td>50,000 & 100,000</td>
<td>1.2” long-slit</td>
</tr>
<tr>
<td>w/ MANIFEST / NS, GLAO</td>
<td>Facility Robotic Fiber Feed</td>
<td>0.36 – 1.0</td>
<td></td>
<td>20’ diameter</td>
</tr>
</tbody>
</table>

*Natural Seeing, Ground Layer AO, Natural Guide Star AO, Laser Tomography AO
TMT first-generation instruments

- **Infrared Imager and Spectrometer (IRIS)**
 - Diffraction-limited near-IR performance with NFIRAOS MCAO system
 - NIR imager: FOV 34” x 34”
 - IFU spectrometer with 4 scales (4-50 mas), FOV up to 4”.3 x 2”.3
 - R ≈ 4000 – 8000, 0.8 – 2.5 μm

- **Wide Field Optical Spectrometer (WFOS)**
 - Multi-slit spectrograph, 0.3 – 1.1 μm, seeing-limited
 - FOV 8’ x 3’
 - R ≈ 1000 (multiplex up to ~100) + cross-dispersed with R ≈ 5000, 8000 (reduced multiplex)

- **Infrared Multi-object Spectrometer (IRMS)**
 - Multi-slit spectrograph, 0.8 – 2.5 μm
 - AO-assisted but not diffraction-limited
 - FOV 2’ diameter, multiplex 20-40
 - R ≈ 5000
Possible future TMT instruments

- High-Resolution Optical Spectrometer (HROS)
- Near-infrared Echelle Spectrometer (NIRES)
- Mid-infrared Echelle Spectrometer (MIRES)
- Infrared Multi-Object Spectrometer (IRMOS) – deployable IFUs with Multi-Object AO (MOAO)
- Planet Formation Instrument (PFI) – high contrast (ExAO) imager/spectrometer
Rapid “beam switching” capability
E-ELT first-light instrumentation

• MICADO – diffraction-limited imager & slit spectrometer
 • Diffraction-limited performance with MAORI MCAO system
 • Imager: FOV up to ~50” x 50” (20” for diffraction-limited sampling)
 • Slit spectrograph, R ≈ 3000, 0.8 – 2.4 μm

• HARMONI – diffraction-limited IFU spectrometer
 • Diffraction-limited performance (in near-IR)
 • Visible and NIR IFU spectrom., 0.47 – 2.45 μm, R = 500 – 20,000
 • 4 scales, 4x4 to 30x60 mas
 • FOV 152 x 214 spaxels → 0”.61 x 0”.86 to 6”.4 x 9”.2

• METIS – mid-infrared imager & spectrometer
 • Diffraction-limited performance, 3-19 μm
 • Low/med.-resolution spectroscopy, 3 – 19 μm (R ≈ 100 to 5000?)
 • Imager + coronagraph FOV 11”x11”
 • IFU spectrograph, 3-5 μm, R ≈ 100,000, FOV 0.5 sq. arcsec
E-ELT next-generation instruments

• HIRES – high-resolution optical-NIR spectrograph
 • 0.37 – 2.4 µm (goal: 0.33-2.4 µm)
 • Simultaneous coverage with R ≈ 100,000 (goal 150,000)
 • Several modes with different multiplex and spectral resolution, including fiber and IFU modes

• MOSAIC – opt/NIR multi-object spectrograph
 • Fiber-fed over ~10 arcmin unvignetted E-ELT FOV
 • High-Definition Mode (HDM):
 • 10-20 deployable IFUs, FOV 2”x2”
 • 1 – 1.8 µm (desired: 0.8-2.45 µm), R = 4000-5000 (desired ≥ 8,000)
 • High-Multiplex Mode (HMM):
 • Multiplex ≥ 200 (desired ≥ 400)
 • R = 5000 and 15,000 (desired 5000, 20,000)
 • 0.4 – 1.8 µm (desired 0.4 – 2.45 µm)
GSMT timelines

- **E-ELT:**
 - Phase 1: AO + 2 lasers, 588 segments (leaving inner hole): 2024
 - Phase 2: Inner 210 segments, full LGS tomography

- **GMT:**
 - Stage 1: Seeing-limited operations with four segments: late 2022
 - Stage 2: Seeing-limited 7-segment operations: 2025
 - Stage 3: AO-capabilities added

- **TMT:**
 - 1st – light for full telescope: 2027