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Why use supernovae to study
massive stars?

Do all methods determine the same progenitor mass?
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Using supernovae to probe red

supergiant mass-loss
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Post-explosion techniques for
determining progenitor mass

» Direct detection: (pre-explosion modeling)
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A 15 Mg progenitor is derived by modeling the

bolometric light curve (from Szalai et al, arXiv:
1903.09048).
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Multi-band light curve modeling of ASASSN-150z
using the SuperNova Explosion Code (SNEC;
Morozova et al., 2015) shows that the observations

are best fit by a 17 Mo progenitor.
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model without circumstellar material is also shown(solid line) although it is
unable to reproduce the early rise in the light curve.

Modeling the
radio
observation of
ASASSN-150z
shows a mass-
loss rate of
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* Light curve modeling: new post-explosion
technique

Flux (x10-16 ergs/cm2/s/A)
Flux (x10-16 ergs/cm2/s/A)

Nebular Spectra
Modeling

] 0

6000 8000
Wavelength (A)

Nebular spectra of SN 2017eaw from multiple
epochs are best characterized by a 15 Mg progenitor
from the models of Jerkstrand et al (2012).

* Nebular spectra modeling: new post-explosion
technique
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An example of the comparison of the nebular spectra
of ASASSN-150z and the progenitor models of
Jerkstrand et al (2012) which shows that the

Lion progenitor of ASASSN-150z was between 15 and 19
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SN 2017eaw : nebular spectra,
light curve modeling, and direct
detection are consistent with a

ASASSN-150z : nebular spectra
and light curve modeling are

consistent with a 17 Mo
progenitor.
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Population of progenitors determined from pre-explosion
imaging does not agree with the predicted population.

15 Mo progenitor.

The light curve and spectroscopic evolution of SN 2018ivc are similar to
SN 1996al except that SN 1996al showed narrow emission lines. The light
curve shape and intermediate width hydrogen emission feature imply
strong interaction with a dense circumstellar material.

Are the predictions wrong or is the
interpretation of the observations incorrect?

Maybe; need bigger samples



