

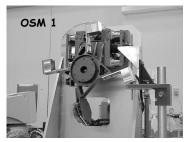
Summary of Test Program to Date

- Completed Environmental Test (TV I) in 2003
- Delivered COS to GSFC in April 2004
- Semi-annual Functional Testing (2004-present)
- Removed, Inspected, Reworked, & Tested MEB boards from August-September 2006 – including replacing all LVPS
- Integrated all boards back in the MEBs in September 2006.
- COS ready for Thermal-Vacuum Test (TV II) in October 2006

Keyes (STUC) - 25 October 2006

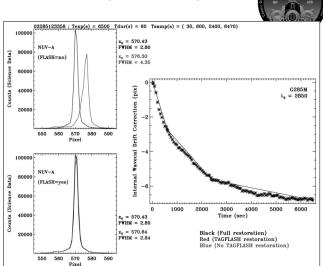
User Support and Ground System Summary

- Astronomer Proposal Tools
 - Spectroscopic and Target acquisition ETCs complete in Dec 2006
 - Bright Object Evaluation tool Dec 2006
 - > Includes GALEX catalog to extend DSS
- COS Handbooks
 - Mini-handbook v. 3.0 : October 2006 (cycle 16 CP)
 - Instrument Handbook v. 1.0 : spring 2007 (cycle 17 CP)
- STScI COS Website
 - http://www.stsci.edu/hst/cos/
- Proposal and Scheduling System
 - All science exposure and calibration commanding is complete
- CALCOS (Pipeline) Development
 - Most pipeline steps tested against instrument data (screening, thermal distortion, geometrical correction, dead-time correction, flatfield, 1-d extraction, wavecal processing, etc)
 - TAGFLASH coded and partially tested Final testing awaits TV II exposures


Keyes (STUC) - 25 October 2006 Slide 4 of 11

Ground Testing Status Summary

- All major performance requirements met in TV I in 2003
 - Spectral resolution
 - Sensitivity
 - Flatfield quality
 - Scattered light
 - Wavelength coverage


- TV I testing revealed spectrum drift caused by OSM motions
 - TAGFLASH Mode (OSM-drift operational correction)
 - > Test at Thermal-Vac II in November 2006

Keyes (STUC) - 25 October 2006

Spectrum Drift Correction (TAGFLASH)

- Analysis of 2003 thermal vac data shows image motion can be corrected to <0.25 resel/hr
- STScI has implemented TAGFLASH as default observing mode for COS; will be used in 2006 TV
- Lamp flashed at beginning and at intervals during every TIME-TAG exposure (based on time since last mechanism motion)
- Projected lamp usage sufficient to support COS over projected lifetime

Keyes (STUC) - 25 October 2006 Slide 6 of 11

TAGFLASH Testing

- Tests during Thermal-Vac II
- Lamp Lifetime Tests ongoing at NIST and CU
- SMOV tests
 - Determine drift character on-orbit for suite of OSM motions
 - Allows changes for on-orbit understanding of drift
 - Early pattern will be conservative (more flashes)

Keyes (STUC) - 25 October 2006 Slide 7 of 11

Ground Science Calibration 2006

- Science calibration tests in November 2006 TV II test at GSFC
- Goals of 2006 test plan ("Appendix C"):
 - Demonstrate continued nominal performance of COS
 - Exercise new modes and capabilities: e.g., "TAGFLASH" observing mode
 - Obtain additional information needed to reduce and interpret science data: external FUV flat-field observations
- Will not repeat all tests from 2003; only those required to meet above goals
- Two-tiered test plan: required tests and optional tests to be executed only if questions arise about the current performance of COS
- Close STScI Thermal-Vac Coordination with IDT
 - Coordinated development of CALCOS via detailed AV-03 specifications and Calibration Working Group meetings
 - Coordinating Thermal-Vac staffing resources and schedules
 - FUV and NUV Thermal-Vac data processed by OPUS and ingested in MAST
 - Initial reference file delivery from IDT prior to SMGT in March 2006

Keyes (STUC) - 25 October 2006 Slide 8 of 11

TV II Science Cal Tests

Required Tests

Test #	Activity	
1111-1121	FUV spectra of PtNe lamp	
1161-1191	NUV spectra of PtNe lamp	
1210-1230	FUV sensitivity measurements	
1250-1295	NUV sensitivity measurements	
1300-1391	FUV external flat-field	
2250	NUV spatial resolution	
2300-2350	Grating stability, FUV & NUV	
3300-3310	BOA transmission & resolution	
3500-3550	OSM1 & OSM2 position checks	
4000	FUV line spread function	
5000	Tag-flash test	

Contingency Tests

1410-1475	Target acquisition	
1700-1750	1700-1750 Internal flat-fields	
2745	FUV detector optimization	
2805-2810	High local count rates	
2950	NUV resolution at FUV PSA offs	

- · Items in red are new tests for 2006.
- Total run time is at approximately 13 days for required tests and 21 days for required+contingency. Science calibration has 23 days in the schedule.

 Keyes (STUC) 25 October 2006

SMOV4 Timeline Summary

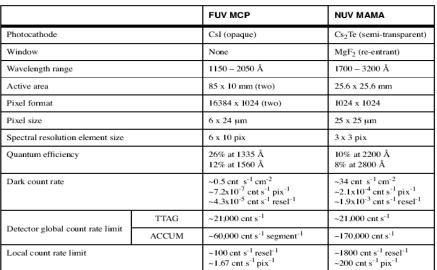
- SMOV4 requirements developed and reviewed in summer 2003.
- "Delta" concept/requirements review in December 2006
- SMOV activity planning (Jan-Mar 2007)
- SMOV Project Review: Apr 2007
- SMOV Program generation: Apr-Sep 2007

Keyes (STUC) - 25 October 2006 Slide 10 of 11

On-orbit Calibration

- Coordinated SMOV and C17 calibration programs to fully calibrate SI.
- Full set of SMOV requirements reviewed and approved in summer 2003 ("delta" review in Dec 2006)
 - e.g., basic aliveness and functional checkout; locate apertures, verify alignment and mechanism stability, verify TA, wavecals, spectral and spatial resolution, flatfields, sensitivity; LSF, drift characteristics
 - Full suite of requirements may be found at:
 - > http://www.stsci.edu/smov/smov4webfolder/SMOV4REQUIREMENTS/smov4webpostings/smovcosrqmts.pdf

Keyes (STUC) - 25 October 2006 Slide 11 of 11


Cosmic Origins Spectrograph Supplementary Material

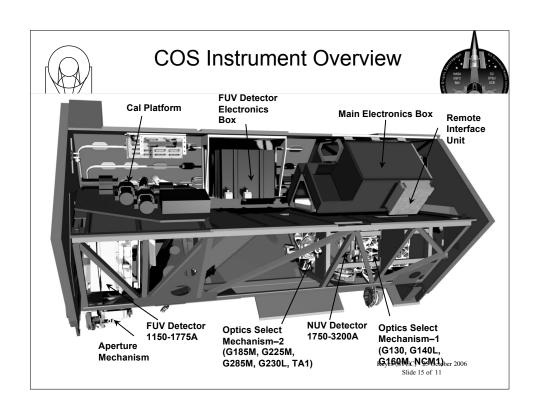
Keyes (STUC) - 25 October 2006 Slide 12 of 11

Cosmic Origins Spectrograph

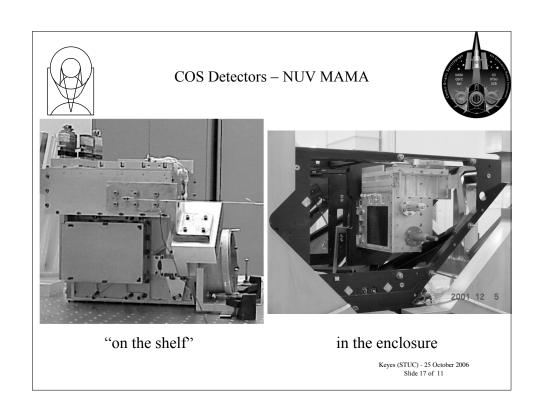
Keyes (STUC) - 25 October 2006

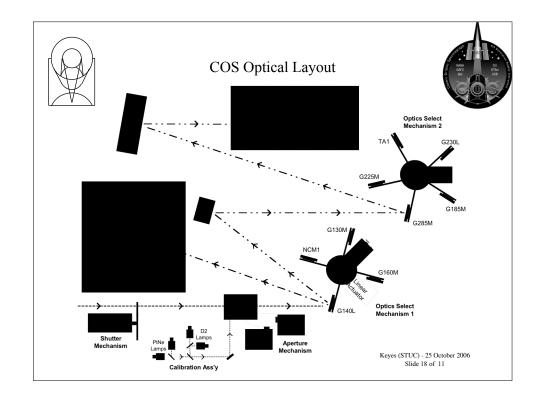
Spectral Resolution and Bandpass Summary

FUV channel


_	G130M	R > 20,000	λλ 1150-1450
_	G160M	R > 20,000	1405-1775
_	G140L	R > 2,000	1230-2050

NUV channel

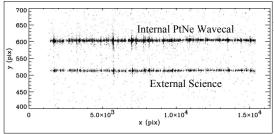

_	G185M	R > 16,000	1700-2100 (3x35)
_	G225M	R > 20,000	2100-2500 (3x35)
_	G285M	R > 20,000	2500-3000 (3x41)
_	G230L	R > 1,700 (most of bar	ndpass) 1700-3200

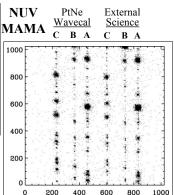

- Bright Object Aperture (BOA) resolution degraded
 - Wedge in ND filter degrades resolution by factor of $\sim\!\!2.5$ for FUV modes and $\sim\!\!4$ for NUV modes.

Keyes (STUC) - 25 October 2006 Slide 14 of 11

Spectral Drift Correction (TAGFLASH)

- Correction needed to meet Level 1 requirements
 - Spectral resolution (and perhaps more importantly, line shape)
 - Wavelength zero point
- Simple correction could be done with existing wavecal capabilities outside science exposures if necessary
 - Wavecal at beginning and/or end of science exposure
 - > Not satisfactory for long exposures
 - > Long exposures could be broken into shorter exposures with additional overhead (~4 min per wavecal, or about 8% observing efficiency loss per wavecal assuming 52 minute orbital visibility)
- TAGFLASH will embed wavecals in science time
 - TIME-TAG mode ONLY
 - No overhead for wavecals at all
 - CALCOS updated to correct for drifts


Keyes (STUC) - 25 October 2006


COS Spectral Layout for Simultaneous Internal Wavecals and Science Spectra

FUV MCP (1 of 2 segments)

- Obtain (continuous or flashed) internal PtNe spectra at same time as science exposure
- Track internal PtNe lines and apply shifts to science spectrum (all events time-tagged) in COS data pipeline
- Scattered light from internal wavecal at position of science spectrum is negligible (<1%); residual events can be removed from TIME-TAG list.

Keyes (STUC) - 25 October 2006 Slide 20 of 11