

HST Instrument Capabilities after SM4

Jerry Kriss

STUC Meeting, October 2006

With input from Tom Brown (WFC3),
Ron Gilliland (ACS),
Diane Karakla (User Support),
Tony Keyes (COS),
Keith Noll & Roelof de Jong (NICMOS),
Charles Proffitt (STIS)

Outline

- The instrument complement after SM4
- Summary of instrument modes and capabilities
 - ◆ Comparison of similar capabilities
 - Unique capabilities
- Past usage history, and expected usage after SM4
- Suggested levels of support
- Instrument mode prioritization

STUC Meeting, October 2006

Jerry Kriss

Instrument Complement after SM4

- COS
 - High sensitivity, moderate & low resolution Far-UV and Near-UV spectroscopy
- WFC3
 - Wide-field Near-UV, Visible, and Near-IR imaging and grism spectroscopy
- **ACS**
 - Wide-field Visible imaging
 - High-resolution Near-UV and Far-UV imaging
 - Near-UV and Visible Coronagraphy and Polarimetry
- STIS
 - High-resolution Far-UV and Near-UV spectroscopy
 - High-spatial resolution UV and Visible spectroscopy
- **NICMOS**
 - Thermal-IR imaging (λ>1.8 μm)
 - · High-resolution IR imaging
 - IR coronagraphy, polarimetry and grism spectroscopy
- FGS
 - Precision astrometry

STUC Meeting, October 2006

Jerry Kriss

3/31

Standard Support for HST Instruments

- Calibration
 - Regular monitoring observations
 - Calibration reference files continuously updated
 - Calibration plans updated each cycle
 - Special calibrations done as necessary
- Data Processing
 - Pipeline and off-line software improvements made as needed
 - Develop specialized data reduction and analysis tools
- Documentation
 - Phase I and Phase II proposal instructions
 - ◆ User Handbooks, Data Handbooks, Instrument Science Reports
 - Web pages
- User Support
 - Contact scientist program
 - Proposal planning tools (APT, and ETCs)
 - Phase 2 proposal reviews

◆ Help desk STUC Meeting, October 2006

Jerry Kriss

Instrument Support Categories

1. New instrument

- Full SMOV activation and calibration of WFC3 and COS.
- Full characterization and regular calibration of primary WFC3 and COS modes.

2. Standard support

- Unique capabilities
- Full calibration. Update reference files regularly. Write ISRs on calibration.
- No SNAPs that require bright-object checking
- · Allocation of resources will generally be based on actual GO usage.

3. Minimal support

- · Low usage, secondary or backup modes
- Minimal expected proposal pressure to use these modes
- Basic calibration observations.
- Calibrations checked, but not fully analyzed.

4. No support (but available as a shared risk)

- · Secondary, backup, and "available-but-unsupported" modes
- No SNAPS or ToOs that require bright-object checking.
- No expected proposal pressure to use these modes
- If observations proposed, then calibration observations must also be proposed and analyzed by users. STUC Meeting, October 2006

COS Capabilities

- The Cosmic Origins Spectrograph (COS) is uniquely suited to address particular scientific questions via greatly enhanced low and moderate resolution FUV capabilities for point sources.
- COS exploits an element of "performance space" by providing >10x the FUV throughput of STIS and up to 70x STIS observing speed.
- COS employs an advanced FUV detector with significantly lower backgrounds and routinely utilizes TIME-TAG and event pulseheight recording.

FUV Detector:

- Two 16k x 1k delay line MCPs
- TIME-TAG; pulse-heights
- 3 gratings
- 300-800 Å spectral coverage
- R=3000; 20,000

NUV Detector:

- 1k x 1k MAMA
- TIME-TAG
- 4 gratings, 1 Mirror and filter
- 100-800 Å spectral coverage
- R=2000; 20,000

STUC Meeting, October 2006

Jerry Kriss

COS UV Spectroscopic Capabilities

COS vs STIS in the UV

	COS/FUV	COS/NUV	STIS/FUV	STIS/NUV
Spectral coverage (Å)	1150-1775(M) 1230-2050(L)	1700-3200	1150-1700	1600-3200
Effective Area 1300 (FUV), 2500 (NUV)	2800 (M) 2400 (L)	900 (M) 750 (L)	400 (M) 1700 (L)	350 (M) 900 (L)
Resolution $(\lambda/\Delta\lambda)$ H M L	N/A 20000-24000 2400-3500	N/A 16000-24000 1500-2800	110000 10000-40000 1000	110000 10,000-30000 500
Number of pixels along dispersion	32768	1024	1024 (2048)	1024 (2048)
Background (cts/resel)	4.3e-5	1.9e-3	350e-5	17e-3
Background equivalent F _λ (erg cm ⁻² sec ⁻¹ Á ⁻¹)	0.5-8e-18	1.3-3.8e-16	20e-18	13e-16
STUC Meeting, October 2006		Jerry Kriss		10/31

- The Wide Field Camera 3 (WFC3) will provide wide-field imaging with continuous spectral coverage from the ultraviolet through the infrared, and IR grism spectroscopy.
- WFC3 dramatically increases both the survey power and the panchromatic science of HST.
- WFC3 will provide advanced detectors with less radiation damage (hot pixels, charge transfer inefficiency, etc.).

UVIS Channel:

- Two 2k x 4k CCDs
- 160"x160" field of view
- 62 filters, 1 grism
- 200-1000 nm bandpass
- 0.039" pixels

IR Channel:

- 1k x 1k HgCdTe array
- 135"x135" field of view
- 15 filters, 2 grisms
- 800-1700 nm bandpass
- 0.132" pixels

STUC Meeting, October 2006

Jerry Kriss

WFC3 Capabilities						
WFC3 vs ACS in the optical (380 nm - 1000 nm)						
	WFC3/UVIS	ACS/WFC	ACS/HRC			
FOV area (arcsec ²)	25600	40804	754			
Broadband throughput @ V, I	0.25, 0.14	0.35, 0.36	0.23, 0.16			
Pixel scale (arcsec)	0.039	0.049	0.027			
Number of pixels	4k x 4k	4k x 4k	1k x 1k			
Read noise	3 e ⁻	5 e ⁻	4.7 e ⁻			
Number of filters	49 (32 full-field, 17 quad)	27 (12 full-field, 15 ramp)	21* (13 full-field, 3 pol., 5 ramp)			
*Some of these cover only the ACS/HRC FOV but can in principle be used in the ACS/WFC.						

Jerry Kriss

STUC Meeting, October 2006

WFC3 / ACS / COS in the near-UV (200 nm - 330 nm)

	WFC3/UVIS	ACS/HRC	COS/NUV
FOV area	25600	754	12.5
(arcsec ²)			4.9 (un-vignetted)
Broadband	0.07, 0.18	0.03, 0.10	0.07, 0.02
throughput			(@ 230, 320 nm)
@ 230, 330 nm			
Pixel scale (arcsec)	0.039	0.027	0.024
Number of pixels	4k x 4k	1k x 1k	166 (diameter)
			100 (un-vignetted)
Read noise	3 e ⁻	4.7 e⁻	none
			(dark equiv flux: ~5e-19)
Number of filters	13	6	1
	(10 full-field, 3 quad)	(3 full-field, 3 UV pol.*)	(broad-band, 1700-3200 Å.)

*These polarizers are optimized for the UV and the ACS/HRC FOV but can in principle be used with the ACS/WFC in the optical. STUC Meeting, October 2006 Jerry Kriss 15/3

WFC3 Capabilities

WFC3 vs NICMOS in the near-IR (800 nm - 2500 nm)

	,				
	WFC3/IR	NIC3	NIC2	NIC1	
FOV area (arcsec ²)	18225	2621	369	121	
Broadband throughput @ 1.1, 1.6 microns	0.29, 0.33	0.13, 0.20	0.14, 0.20	0.12, 0.18	
Wavelength Range	0.9-1.7 μ	0.8-2.5 μm	0.8-2.5 μm	0.8-1.8 μm	
Pixel scale (arcsec)	წ!132	0.200	0.075	0.043	
Number of pixels	1k x 1k	256 x 256	256 x 256	256 x 256	
Eff. read noise	14	22	20	22	
number of filters	15	19 (16 standard, 3 grism)	19 (16 std., 3 pol.)	19 (16 std., 3 pol.)	

STUC Meeting, October 2006 Jerry Kriss 16/31

WFC3 UVIS Filters - Broadband

Wavelength (nm)					
Name	Description	pivot	width	Nearest ACS Equivalent	
F200LP	Clear	569	800	-	
F218W	ISM feature	218	35	HRC/F220W	
F225W	UV Wide	234	55	-	
F275W	UV Wide	272	48	HRC/F250W	
G280	Grism	278	185	HRC/PR200L	
F300X	Extremely wide UV	283	75	-	
F336W	U, Stromgren u	336	55	HRC/F330W	
F350LP	Long Pass	681	450	-	
F390W	Washington C	390	95	-	
F438W	WFPC2 B	431	68	F435W (WFC & HRC)	
F475W	SDSS g'	476	149	F475W (WFC & HRC)	
F475X	Extremely wide blue	492	220	-	
F555W	WFPC2 V	531	160	F555W (WFC & HRC)	
F600LP	Long Pass	843	400	-	
F606W	WFPC2 Wide V	591	230	F606W (WFC & HRC)	
F625W	SDSS r	625	158	F625W (WFC & HRC)	
F775W	SDSS i	773	149	F775W (WFC & HRC)	
F814W	WFPC2 Wide /	830	254	F814W (WFC & HRC)	
F850LP	SDSS Z'	976	150	F850LP (WFC & HRC)	

STUC Meeting, October 2006 Jerry Kriss 17/31

WFC3 Capabilities

WFC3 UVIS Filters - Medium and Narrow

'	, v. O		5 1410	zaiaiii aila i	allow	
			Wavelength	n (nm)		
N	lame	Description	pivot	width	Nearest ACS Equivalent	
F	390M	Call continuum	389	21	-	
F	410M	Stromgren v	411	18	-	
F	467M	Stromgren b	468	22	FR459M (ramp; WFC & HRC)	
F	547M	Stromgren y	544	71	F550M (WFC & HRC)	
F	621M	11% passband	622	63	WFC/FR647M (ramp)	
F	689M	11% passband	689	71	-	
F	763M	11% passband	764	80	-	
F	845M	11% passband	847	89	-	
F	280N	MgII 2795,2802	233	3	-	
F	343N	[NeV] 3426	344	14	HRC/F344N	
F	373N	[OII] 3726/3729	373	4	FR388N (ramp; WFC & HRC)	
F	395N	Call H&K	395	7	-	
F	469N	Hell 4686	469	4	WFC/FR462N (ramp)	
F	487N	Ηβ 4861	487	5	-	
F	502N	[OIII] 5007	501	6	F502N (WFC & HRC)	
F	631N	[OI] 6300	630	4	-	
F	645N	Continuum	645	9	-	
F	656N	Ηα 6563	656	1	FR656N (ramp; WFC & HRC)	
F	657N	Wide Hα+[NII]	657	10	•	
F	658N	[NII] 6583	659	2	F658N (WFC & HRC)	
F	665N	z (Hα+[NII])	665	11	F660N (WFC & HRC)	
F	673N	[SII] 6717,6731	676	10	-	
F	680N	z (Hα+[NII])	688	32	-	
F	953N	[SIII] 9532	953	8	-	
CTITIC M	0 . 1	2006		Y7. *		10/21
STUC Meetin	g, October	2006	Jerr	y Kriss		18/31

9

WFC3 UVIS Filters - Quad

		Wavelength (nm)	
Name	<u>Description</u>	pivot	width	Nearest ACS Equivalent
FQ232N	CII] 2326	233	3	-
FQ243N	[NeIV] 2425	242	3	-
FQ378N	z ([OII] 3727)	379	9	-
FQ387N	[NeIII] 3869	387	2	-
FQ422M	Continuum	422	11	WFC/FR423N (ramp)
FQ436N	Hγ+[OIII] 4363	437	4	-
FQ437N	[OIII] 4363	437	2	-
FQ492N	z (Hβ)	493	10	-
FQ508N	z ([OIII] 5007)	509	12	FR505N (ramp; WFC & HRC)
FQ575N	[NII] 5755	576	1	WFC/FR601N (ramp)
FQ619N	CH4 6194	620	6	-
FQ634N	6194 continuum	635	7	-
FQ672N	[SII] 6717	672	1	-
FQ674N	[SII] 6731	673	1	-
FQ727N	CH4 7270	727	6	WFC/FR716N (ramp)
FQ750N	7270 continuum	750	7	WFC/FR782N (ramp)
FQ889N	CH4 25/km-agt	889	9	HRC/F892N
FQ906N	CH4 2.5/km-agt	906	9	FR914M (ramp; WFC & HRC)
FQ924N	CH4 0.25/km-agt	925	9	-
FQ937N	CH4 0.025/km-agt	937	9	WFC/FR931N (ramp)

STUC Meeting, October 2006 Jerry Kriss 19/31

WFC3 Capabilities

WFC3 IR Filters

		Wavelength (nm)	
Name	Description	pivot	width	Nearest NICMOS Equivalent
F098M	Blue grism reference	983	169	NIC1/F090M
G102	Blue grism (high res.)	1025	250	NIC3/G096
F105W	Wide Y	1049	292	-
F110W	Wide YJ	1141	503	F110W (NIC1, NIC2, & NIC3)
F125W	Wide J	1246	302	-
F126N	[Fell]	1258	11	-
F127M	Water/CH4 continuum	1274	69	-
F128N	Paschen β	1283	14	-
F130N	Paschen β continuum	1301	13	-
F132N	Paschen β redshifted	1319	13	-
F139M	Water/CH4 line	1384	65	NIC1/F145M
F140W	JH gap	1392	399	NIC3/F150W & NIC1/F140W
G141	Red grism (low res.)	1410	600	NIC3/G141
F153M	H20 & NH3	1533	69	NIC1/F145M
F160W	Blue-shifted H	1541	288	F160W (NIC1, NIC2, & NIC3)
F164N	[FeII]	1645	17	NIC3/F164N & NIC1/F164N
F167N	[FeII] continuum	1667	17	NIC3/F166N & NIC1/F166N

STUC Meeting, October 2006 Jerry Kriss 20/31

Unique ACS Capabilities

- High-throughput, wide-field Optical imaging
- High-resolution Far-UV, Near-UV and Optical imaging
- UV and Optical Coronagraphy
- UV and Optical Polarimetry

STUC Meeting, October 2006

Jerry Kriss

21/31

Unique ACS Filters

- G800L -- grism for both WFC and HRC that provides R=100 spectroscopy over 5500-11000A. With the WFC this will continue to provide a quite unique capability with excellent response in the red.
- Ramp filters which cover nearly all of the optical with either 2% or 9% widths and a 70x70" FOV.
 - These are used by the community, but not heavily so.
 - Our calibrations have been minimal, and there is currently a caloutsourcing program for ramp flats.
 - Many wavelength settings that might be used would be covered by specific WFC3 filters.
- SBC/UV filters have no WFC3 counterparts: F122M, F115LP, F125LP, F140LP, F150LP, F165LP and PR110L and PR130L.

STUC Meeting, October 2006

Jerry Kriss

Unique NICMOS Capabilities

- Thermal IR Imaging at λ>1.8 μm
- IR grism spectroscopy at λ >1.8 μ m
- High-resolution IR imaging
- IR Coronagraphy
- IR Polarimetry

STUC Meeting, October 2006

Jerry Kriss

$\mathbb{Z}[$	Uniqu	ie Nic	CMOS	filters
		Waveleng	th (nm)	
Name	Description	pivot	width	Nearest WFC3 Equivalent
F090M /NIC1		903	56	F098M Blue grism reference
F095N /NIC1	[S III]	954	4	-
F097N /NIC1	[S III] continuum	972	4	-
F108N /NIC1/3	He I	1082	4	-
F113N /NIC1/3	He I continuum	1130	5	-
F145M /NIC1	Water	1455	59	F139M Water/CH4 & F153M H20 & NH3
F165M /NIC1/2		1648	59	-
F170M /NIC1		1706	60	-
F171M /NIC2		1721	25	-
F175W /NIC3		1750	1100	-
F180M /NIC2	HCO and C2 bands	1797	69	-
F187W /NIC2		1872	245	-
F187N /NIC1/2/3	Pa-alpha	1874	19	-
F190N /NIC1/2/3	Pa-alpha continuum	1900	18	-
F196N /NIC3	[SiVI]	1964	19	-
F200N /NIC3	[SiVI] continuum	1998	21	-
F204M /NIC2	Methane	2035	104	-
F205W /NIC2	Broad K	2074	598	-
F207M /NIC2		2082	152	-
F212N /NIC2/3	H2	2121	21	-
F215N /NIC2/3	H2 continuum	2149	20	-
F216N /NIC2	Brackett gamma	2164	21	-
F222M /NIC2/3	CO continuum	2218	145	-
F237M /NIC2CO		2369	154	-
F240M /NIC3CO band		2396	195	-

Unique STIS Capabilities

- Echelle modes have higher spectral resolution (up to 200,000 vs 24,000 maximum for COS).
- Long slits can give high-spatial-resolution optical and UV spectra even in crowded fields.
- STIS NUV imaging will have a lower dark rate after SM4 due to additional passive cooling, and it is free of read noise and cosmic rays.
- STIS time-tag has higher resolution (125 μs vs 32 ms for COS).
- STIS can observe objects too bright for COS. (COS ND aperture degrades resolution by 3-5x.)

STUC Meeting, October 2006

Jerry Kriss

25/31

HST Instrument Usage, Historical & Projected

Detector/Mode	Cycle 14&15	Est. Cycle 17*	Comment
ACS	65%	33%	Wide field, high-res, pol., cor.
NICMOS	26%	4%	High-res, pol., cor., λ>1.8 μm
STIS	23%**	12%	Unique spatial & spectral resolution
FGS	1%	1%	Precision astrometry
cos		16%	High UV throughput
WFC3		34%	High panchromatic throughput & FOV

**Cycle 12&13 *Biagetti et al. 2003

STUC Meeting, October 2006

Jerry Kriss

Imaging Instrument Historical Usage (by Exposure Time*)

Detector/Mode	Cycle 14&15	Est. Cycle 17	Comment
ACS/WFC	51%	26%	WFC3 surveys will be common
ACS/HRC	10%	3%	Will be mostly high-res + Cor.
ACS/SBC	4%	4%	Unique mode
NIC1	2%	1%	Will be mostly high-res
NIC2	9%	1%	Will be mostly high-res
NIC1,2 Polarization	0.4%	0.5%	Unique mode
NIC2 Coronagraphy	1.6%	1.5%	Unique mode
NIC3 (λ<1.8 μm)	14%	0%	Superseded by WFC3
NIC3 (λ>1.8 μm)	0.3%	0.3%	Unique mode
STIS/FUV-IMG	0.2%**	0%	Superseded by ACS/SBC
STIS/NUV-IMG	0.1%**	0%	Superseded by ACS/HRC
STIS/CCD-IMG	0.1%**	0.1%	Mostly Target Acq Verification
FGS	1%	1%	Unique mode & science
Meeting, October 2006	**Cycle 12&13.	erry Kriss	*GO/GTO/DD programs at Phase 2 ingest. 27/31

STUC Meeting, October 2006

Spectroscopic Mode Historical Usage (by Exposure Time*)

Detector/Mode	Cycle 12&13	Est. Cycle 17	Comment
ACS/G800L	4%**	4%	Subset of ACS/WFC time
STIS/UV-*L,*M	8%	1%	Spatial resolution is unique
STIS/Echelle *M	6%	3%	R~40,000 is unique
STIS/Echelle *H	3%	3%	R~100,000 is unique
STIS/CCD-*L,*M	6%	5%	Spatial resolution is unique
STIS/NUV-Prism	0.5%	0%	Superseded by SBC & WFC3

**Cycle 14&15.

*GO/GTO/DD programs at Phase 2 ingest.

STUC Meeting, October 2006

Jerry Kriss

Projected Usage for WFC3 and COS

Detector/Mode	Est. Cycle 17*	Comment
COS Low Res	2%	Used only for the faintest objects
COS Med Res	14%	Supersedes most STIS UV
WFC3 UVIS	20%	Panchromatic surveys
WFC3 IR	14%	Supersedes NIC3; pan. surveys

*Biagetti et al. 2003

STUC Meeting, October 2006

Jerry Kriss

29/31

Instrument Support Categories

1. New instrument

- Full SMOV activation and calibration of WFC3 and COS.
- Full characterization and regular calibration of primary WFC3 and COS modes.

2. Standard support

- Unique capabilities
- Full calibration. Update reference files regularly. Write ISRs on calibration.
- · No SNAPs that require bright-object checking
- · Allocation of resources will generally be based on actual GO usage.

3. Minimal support

- Low usage, secondary, or backup modes
- Minimal expected proposal pressure to use these modes
- · Basic calibration observations.
- · Calibrations checked, but not fully analyzed.

4. No support (but available as a shared risk)

- Secondary, backup, and "available-but-unsupported" modes
- No SNAPS or ToOs that require bright-object checking.
- · No expected proposal pressure to use these modes
- · If observations proposed, then calibration observations must also be proposed and analyzed by users. STUC Meeting, October 2006

Jerry Kriss

Instrument Support Classification

1. New instrument

• COS, WFC3

2. Standard support

- ACS/WFC, ACS/HRC, ACS/SBC (Imaging+Grisms)
- STIS/E*H, STIS/E*M, STIS/CCD*L,*M
- FGS*

3. Minimal support

- STIS/UV*L,*M, STIS/NUV-IMG, STIS/NUV-Prism*, STIS/COR*
- NIC1, NIC2, *NIC1,2/POL**, *NIC2/COR**, NIC3/(λ>1.8 μm)

4. No support (but available)

• STIS/FUV-IMG, STIS/CCD-IMG

*candidates for outsourcing

STUC Meeting, October 2006

Jerry Kriss

31/31

Back-up slides follow

STUC Meeting, October 2006

Jerry Kriss

STIS after SM4

- STIS NUV dark rate had been about 0.0012 counts/pixel/s; ~ 4X COS dark rate, but ...
- STIS MAMAs will get passive cooling added during SM4.
 - ◆ Should maintain or even reduce STIS MAMA dark rate, despite expected increase in aft-shroud temperatures.
- Will need to check alignment and calibrations, but expect most calibrations to need only minor adjustments...

STUC Meeting, October 2006

Jerry Kriss

33/31

STIS Echelle Modes

- In cycle 12 & 13, Echelle H modes 3.2% of initially approved GO expo time; Echelle M modes at 7.1%.
- Expect ~4-5% total usage after SM4.
- E140H and E230H spectral resolution is normally ~110,000, but can be up to 200,000 when using smallest 0.1" × 0.03" aperture.
- E140M (R=45,000) and E230M (R=30,000) resolution modestly better than COS m-modes 16,000 24,000.

STUC Meeting, October 2006

Jerry Kriss

STIS CCD Spectral Modes

- In Cy 12 & 13 these modes averaged 7.5% of initially approved GO exposure time.
- No bright object constraints
- 0.05" spatial resolution of extended objects
- Only long slit optical spectroscopy on HST
- Aperture bars allow coronagraphic spectroscopy
- Much higher resolution than slitless prisms and grisms available with other HST detectors

STUC Meeting, October 2006

Jerry Kriss

35/31

STIS 1st Order UV Modes

- In Cy 12 & 13 these modes (G140L, G230L, G140M, G230M) received 10% of expo time.
- Long slits allow 0.025" spatial resolution spectra of extended objects.
- G*M modes have very short per-tilt λ coverage (55 Å G140M, 90 Å for G230M).
- G*L modes used to perform sensitivity monitoring for most MAMA modes, so some calibration must continue.

STUC Meeting, October 2006

Jerry Kriss

STIS NUV-PRISM

- Averaged 0.6% of approved GO exposure time in cycles 12 and 13.
- Provides slitless multi-object spectroscopy covering both NUV & FUV (1150 –3620 Å).
- Throughput smaller than overlapping SBC or HRC prism modes.

STUC Meeting, October 2006

Jerry Kriss

37/31

STIS Coronagraphic Imaging

- Last used in Cycle 11.
- Suppression of light in PSF wings and PSF stability inferior to HRC coronagraph.
- Only supports unfiltered coronagraphic imaging.
 - Very broad band pass results in large color effects on PSF, making subtraction of standard PSFs difficult
- Narrowest 0.6" wedge position significantly smaller than ACS small spot (1.8"), so may be preferred for imaging very close material.

STUC Meeting, October 2006

Jerry Kriss

STIS NUV Imaging

- Only 0.1% of GO exposure time in Cy 12 & 13
- Advantages versus HRC or WFC3 UV modes for observing very faint targets
 - Much lower dark current
 - ◆ No read noise
 - · Broader filters.
- Disadvantages compared to HRC/WFC3
 - STIS PSF wider and less stable
 - STIS MAMA will often have bright object concerns
 - Narrower filters give HRC/WFC3 smaller color terms

STUC Meeting, October 2006

Jerry Kriss

39/31

STIS FUV Imaging

- Received 0.3% of exposure time in cy 12 &13
- Less sensitive than comparable SBC modes
- Fewer filter choices than SBC
- Time-tag available for STIS FUV imaging, but not SBC imaging

STUC Meeting, October 2006

Jerry Kriss

STIS CCD Imaging

- About 0.9% of exposure time in C12/13. (Mostly target confirmation images.)
- Throughput inferior to broad band WFC3 and ACS/WFC modes.
- Only two very broad and two narrow filters (plus little used ND filters).
- PSF less stable than newer detectors
- Broad filters give large color terms to photometry and PSFs.
- CTI much larger than for newer CCDs

STUC Meeting, October 2006

Jerry Kriss

41/31

ACS Use (by Exposure Time in Ksec)

Detector	Cycle 15	Cycle 14
ACS Totals	6144 (55.0%)**	7310 (66.2%) **
WFC *	77.6%	76.6%
HRC	11.2%	20.6%
SBC	11.2%	2.8%
WFC SNAPs	9.7%	24.5%
HRC SNAPs	5.5%	17.1%
POL filters	1.1%	1.7%
RAMP filters	0.6%	0
G800L	1.2%	7.2%

GO,GO/DD,GTO - prime and parallel

^{*} Includes 5-10% coord. parallel usage

^{**} Percent of all GO/GTO obs in cycle

NIC Instrument Use (by Exposure Time in Ksec)

Detector/Mode	Cycle 15	Cycle 14
NIC Totals	3239 (29.0 %)**	2194 (19.9%) **
NIC1	10.1%	1.5%
NIC2	42.7%	23.8%
NIC3	47.1%	74.5%
SNAPs	1.0%	0
NIC2/Coron	6.3%	7.7%
NIC1+2/Pol	2.5%	0.7%
NIC3/K-band (>F175W)	2.8%	4.4%

GO,GO/DD,GTO - prime and parallel ** Percent of all proposed GO/GTO obs

STUC Meeting, October 2006

Jerry Kriss

43/31

Relative Usage of Unique NIC Filters (by Exp Time in Ksec)

Detector/Mode	Cycle 15	Cycle 14
NIC Totals	3239 (29.0 %)**	2194 (19.9%) **
Nic1/F095N	0	0
Nic1/F097N	0	0
Nic1+3/F108N	0.5%	0.1%
Nic1+3/F113N	0	0
Nic1/F145M	0	1.4%
Nic1+2/F165M	0	0
Nic1/F170M	0	1.4%
Nic2/F171M	0	0.1%

GO,GO/DD,GTO - prime and parallel

STUC Meeting, October 2006

Jerry Kriss

^{**} Percent of all proposed GO/GTO obs

WPC2 Use (by exposure time)

	Cycle 15	Cycle 14
Total WFPC2	1728 (15.5%) *	1344 (12.2%) *
Primary	3.9%	5.6%
Parallel	96.1%	94.4%
SNAPs	0	0.3%

FGS Use (by exposure time)

	Cycle 15	Cycle 14
Total FGS	66 (0.5%) *	186 (1.7%) *

GO,GO/DD,GTO - prime and parallel

* Value in Ksec and given in percent of all proposed GO/GTO obs

STUC Meeting, October 2006

Jerry Kriss

45/31

STIS Usage of Unique Modes (by Exp Time)

STIS Mode	Cycle 12+13*
Echelle Hi-res	3.2%
Echelle Med-res	7.1%
CCD/Spectral	7.5%
G140L/M, G230L/M	10.0%
NUV Prism	0.6%
Coron	0
NUV Imaging	0.1%
FUV Imaging	0.3%
CCD Imaging	0.9%

GO,GO/DD,GTO - prime and parallel

Percent of all proposed GO/GTO obs

STUC Meeting, October 2006

Jerry Kriss